Harvard Journal of Law & Tec_hnb!ogy
Volume 10, Number 2 Winter 1997

COMPUTER SCIENCE CONCEPTS IN COPYRIGHT CASES:
THE PATH TO A COHERENT LAW

a o Marr:zA Ham:lton
: Ted Sabety"*

* TABLE OF CONTENTS
L INTRODUCTION e e 240
. THE COMPUTER SOFI'WARE COPYRIGHT CONTROVERSY:
THE NEED TO SPEAK WITH COMPUTER SCIENCE WORDS

AND TO THINK WITH COMPUTER SCIENCE CONCEPTS 243

1. “PROGRAM SmucrURE » DATA STRUCTURES, ‘
AND ALGORITHMS", T .

A. A Brief Primer on Computer Science Relevant K
" toCopyright Law ool i, eain 252 i
- 1. ‘WhatIs an Algorithm? R e eieai.a..252
" 2. WhatIsaData Structure?0..... 254
B. The Legal Implications of the Dependence of Algorzthms N 5
'onDataStructures...........,.‘ L.0259

1V. “PROGRAM STRUCTURE”AND COPYRIGHT _ s
' OFACOMPUTERLANGUAGE e e A RETEEE .. 02657

A. What is a Computer. Language7 .:.7; R Ceeavies. 265 o
B Computer Languages Should Not Be Copyrightable 269 =
C.. “Program Structure” and Non-Literal Inﬁmgement IR
afa Compu!erLanguage Grammar e ee. 2720 0
D. Computer Language Grammar,: Copyrzght ‘ E
”fandLotusv Borland e NPT 274
V. SUMMARY AND CONCLUS}ON e eewenea . 278
. A. What a Judge Should Ask the J”t\ez:rm_zir B 278
B - Computer Terms of . Ar; and Copyright Analysis 279
=g

I

x : k -
* Professor of Law, Benjamin N, Cardozo School of Law. We owe # large debtof
- -gratitude to Pamela Samuelson, whose comments (and former writings) were very helpful.
- "We also thank Mark Lemley, Bill Patry, and Stewart Sterk for their comments on an earlier .
draft and Cynthia Cock and Reni Jacobson for research assistance. _
- ** 1D, Class.of 1997, Columbia University School of Law. ©

R Y 'Harvérd..llaurrrirl afLaw& Teghnolbgy_ [Vol. 10
I IN‘T‘RODUCT[ON

The law surroundmg computer soﬂware copynght‘ isona colhsron
. course W1th computer science. One of the main reasons for this is that
~legal terms of art in copyrlght case law do not reflect accepted computer -
© .. science tenmnology For example, the cases have coined phrases like
“structure, sequence, and organization’ and “program structure,” but
neither term’ accurately reflects computer science reality. The use of
these court-made terms has tended to make the application of copyright
law to' computer software frustrating for judges and litigants and
confusing for the billion-dollar computer software industry.

Because the Copyright Act’ unambiguously protects computer
* programs,” but the discourse has not yet accurately identified the
noncopyrightable elements bound up ‘within programs, there is a serious
likelihood that authors of computer programs are receiving and will
receive more protection than copyright law and policy justify. This
inadvertent overprotection of computer software introduces powerful
negative externalities into the software industry. '

For example, Sun Mlcrosystems requires that users enter into a
detailed licensing agreement before writing a program that imp! lements
their programming language, “Java.”. A dispute between Sun and one of
their licensees, Microsoft, is emerging because Microsoft has medified
" its .version of Java to increase compatibility with their Windows

1. Computer programs have been recognized as copyrightable by the U.S. Copyright
Office since 1964. See George D, Caxy, Copyright Registration and Computer Programs,
11 BuLL. COPYRIGHT SOC’y 362 (1964); Second Supplementary Report of the Register of
Copyrights on the General Revision of the U.S. Copyright Law: 1975 Revision Bill 2
{1975) {explaining that the definition of literary works was intended to be broad enough to
ENCcOmpass computer programs); see aiso Apple Computer, Inc. v. Franklin Computer
Corp., 714 F.2d 1240, 1249 (3d Cir. 1983) (holding that the Apple system program object
code embodied in read-only memory (“ROM”) was copyrightable subject matter).-

“Software” and “program’” are two terms that are used interchangeably in the computer
science field. However, the connotations in certain contexts may be different. For example,
a program is the sequence of instructions that are executed by the computer when it
performs a desired task. Software, on the other hand, somelimes refers-to a finished-
program product ready for retail sale, e.g., a copy of the program as well as instruction
manuals, help files, tutarial programs, and other aspects that make the program consumable
by the public. :Ofien a software product is a collection of several programs that together
constitute a single product for sale. This Article follows computer science conventmn and
uses thé terms essentially interchangeably.
" 2. Whelan Assocs,; Inc. v. Jaslow Dental Lab Inc 797 F.2d I222 1224 (3d Cir.
1986). . .
3. Computer Assocs. Int'1 ac. v. Altai, Inc 98‘2 F. 2d 693 702,707 (2d Crr 1992).
4. 17U.S.C. §§ 101-121 {1994), " :
5. See 17 U.S.C. § 101 {1994) (defining “compuler program " and' “lrlerary work”),
- see also Sepa Enters. v.'Accolade, Inc., 977 F.2d 1510, 1519 (9th Cir. 1992). ‘

S

N
B

. No.2] - Cbmp#ter Science Cancept.s" in Copyright Cases . 241

\‘»

‘operatmg system wnhout Sun s permission.® This dlspute may erupt into
litigation centering on the question of whether computer languages are .
copyrightable subject matier — and it may turn out that Sun s ngorous

_ hcensmg requirements ar¢ unenforceable,

To be fair, courts, Congress, and the commentators have not known
‘what they: did not know. The tests proffered in the leading software
cases, Whelan Associates, Inc. v. Jaslow Dental Laboratories, Inc.” and
Computer Associates International, Inc. v. Altai, Inc..* draw on two
different branches of settled copyright doctrine, but both suffer from a
" lack of accurate terminology for discrete aspects of the software. On the
one hand, the Whelan court protects the structure, sequence, and
organization of the program, drawing upon well-settled copyright
doctrine that structure and organization are copyrightable even when the -
component pieces of a work are not.” On thé other hand, the Altai
decision tells courts: to excise. the noncopynghtable aspects of the
 program before assessing the program’s overall copyrightability, drawmg :
- upon well-settled copyright precedent regarding infringement analysis.'
The approaches in these two leading computer software copyright cases :
threaten to protect noncopyrightable elements in computer programs
because they fail to use scientifically relevant terms to 1dent1fy those.
noncopyrightable elements. . ‘
, While the courts have been craﬁmg new]egal terms to dea.l w1th

computer software cases, important computer science terms that could
contribute to more accurate application of copyright law have not found
their. way into the courts’ copyright lexicon. The use of computer-
science terms such as “data’structure,” “algonthm * and “compater' 5
Ianguage “would assist courts as they attempt to determine that whichis =

copyrightable in a computer program and that which is not. -Although =

some commentators have offered compglhng arguments that Computer
programs, and other types of “know-how,” do not fit neatly within . .
existing intellectual property paradigms, the fact is that the 1976 .-

. See .S'zm Wakes Up and Smells the Java, BUS WI(Dec. 23, 1996 at 46,
. 797 F.2d 1222 (3d Cir. 1986). .
. 982F.2d 693 (2d Cir. 1992). .
. See infranote 51 and accompanying text.
10 See Altai, 982 F.2d at 707; see also infra notes 52-55 and ; accompanymg fext.
11. See Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of
Computer Programs, 94 CoLuM. L. REv. 2308 (1994) (proposing a sui generis légal
" protection for computer software); Jerome Reichman, Legal Hybrids Between the Parent
. and Copyright Paradigms, 94 COLUM. L. REv. 2432 (1994) (surveying hybrid legal regimes
_ for protecting industrial arts) fhereinafter Reichman, Legal Hybrids]; Jerome Reichman,
Charting the Collapse of the Patent-Copyright Dxcholam y: Premises for a Restructured
International Intellectual. Property System, 13 CARDOZO ARTS & ENT. LY. 475 (1995)
* (suggesting that a new inteHectual property paradlgm isneeded to mplaoe a pruhfemuon of
‘ hybnd legal reglmes) .

RPN

242 Harvard Journal of Law & Technology ~ [Vel. 10

- Copyright Act explicitly. covers computer programs and therefore
‘requires coutts to grapple w1th the apphcatlon of copyright concepts to -
programs.- “

. ~This. Artlcle 5 thesns is that it is time to accurately name the

' copynghtable elements of computer software using computer science

- terminology so that copyright analysis can go forward on more solid -

footing. The monopoly created by imprecise application of copyright

law to computer software is leading to anti-competitive effects that could

_ be corrected through the use of more exact computer science terminology
in the case law.'? This Article takes a step toward mitigating the case
law’s unintended externalities by bringing the two discrete worlds of
copyright law and computer science directly into contact with one
another. Now is the time for such a project because of the current
explosion in software authorship and the widespread computer use
attendant upon the arrival of the global information infrastructure.”

- Part I provides an overview of the computer software copyright
controversy. -Part II suggests that the terms “structure, sequence, and
organization” and “program structure” obscure the question of whether
the program’s data structure is .copyrightable. By employing the
.appropriate computer language terminology, we illustrate that many
computer software copyright cases have coined terminology that leads
courts to ‘provide copyright protection for elements of programs
unworthy of protection. In particular, we conclude in Part Il that data
structures necessary to a particular- algorithm should mot receive
copyright protection because such protection would confer a de facto

monopoly.over the uncopyrightable algorithm. Part 1il makes the point

- that computer languages should not be protected because such protection

confers a priori copyright protection on unfixed expression. The same

reasoning leads to the conclusion that computer language grammars also

* fail to qualify for copynght protecuon

TRy

12. Professor Randall Davisinitiate this important project with his article, The Nature
of Software and Its Cam:equences Jor Eslablzshmg and EvaluatmgS:m: larity, 5 SOFTWARE
LY. 299(1992). :
.Internationat -law would also benefit from more specificity. See: Mu]nlateral

e Negotiations, Marrakesh Agreement Establishing the World Trade Organization, signed at

Marrakesh {Morocco), Apr. 15, 1994, Appendix F: Agreement on Trade-Related Aspects
of Intetlectual Property Rights, Including Trade in Counterfeit Goods [hereinafter TRIPS

Agreement]. The TRIPS Agreement is as vague on this score as American law, - . B
13. Fourth quarter 1995 worldwide revenues in software were $2.01 billion. See Don_

. Clark, Sales far Large-Camputer Software Surge, WaLL ST. I, Apr. 4, 1996, at B2. :

b

' No.2] Computer Science Concepts fn‘Ci_)pyri'ghz Cases - 243

II. THE COMPUTE_R SOFTWARE COPYRIGHT CONTROVERSY:
- THE NEED TO SPEAK WITH COMPUTER SCIENCE WORDS
AND TO THINK WITH'COMPUTER SCIENCE CONCEPTS

The apphcatlon of ‘copyright law’ to computer programs has

‘ produced a prodigious amount of commentary- and controversy for over

twenty years," Even though the copyright statute has been written and
re-written in order to accommodate emerging technologies,” and
computer programs in particular,'® there is still considerable uncertainty
when it comes to the copyrightability of computer program elements.
In general any creative work that is “fixed in any tangible medium

_of expression” may be protected by copyright law."” Fixation means that

the expression® is somehow recorded in some kind of medium. Canvas,
paper, magnetic tape, and now computer memory and computer disk
storage are considered mediums of expression. An important aspect of
copyright law doctrine, and one that fundamentally distinguishes it from
patent law, is that expression may be afforded copynght protection but
the underlying ldea embodied in that expression is not copynghtable 12
This meansthat processes and procedures described by a text (or a

_ computer program) may not be protected by cepyrlght even though the o L

text (or the program code) itself can be.

In addmon the Supreme Court has held that only work that meets -
some de minimis threshold of originality and creativity can be protected.
“Sweat of the brow” alone does not justify copyright protection for a
work.® The Court decided that the act of compiling phone numbers in
alphabetical order for a phone book did not meet the de minimis

14. Sez generally Anthbny L. Clapes et al., Sificon Epics and Binary Bards:
Determining the Proper Scope of Copyright Protection for Computer Programs, 34 UCLA
L. Rev. 1493 (1987); Steven R. Englund, Ideq, Process, or Protected Expression:

© Determining the Scope of Copyright Protection of the Structure of Computer Programs, -

88 MicH. L. Rev. 866 (1990); Morton D. Goldberg & John F. Burlicgh, Copwright
Protection for Computer Programs: Is the Sky Falling?, 17 AM. INTEL. PROP.L. ASS'NQ.
J1.294(1989); Peter S. Menell, Computer Copyright, 41 STAN. L. REV. 1045 (1989); Arthur

'R. Miller, Copyright Protection for Computer Programs, Databases, and Computer

Generated Works: Is Anything New Since CONTU? 106 Harv. L. REv. 977 (1993),
Samuelson et al., supra note 11.

15. “Copynghl prolection subsists, in accordance wﬂh this mle, in original works uf
authorship fixed in any tangible medium of expression, now known or later developed . .

~17U.8.C. § 102(a) (1994).

16. See supranote I and accompanying text.

17. 17.US.C. § 102 (1994).

18. See id § 101 (giving the smtutory definition of “fixed’ ‘]

19. See, e.g., Baker v. Selden, 101 U.S. 99, 103 (1879). '
20. See Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 359-60 {1991).

. 244 .~ Harvard Journal of Law & Technology ~ [Vol. 10

creativity standard regardless of how much work was required.”
However, collections of unprotected elements that are compiled in a’
creative way can be protected as compilations: the protection extends to
the compilation aspec’ »ut not to the unprotected underlying elements.
A literal copy of work is infringing,”” But a non-literal copy can
infringe as well. “{Copyright] cannot be limited literally to the text, else
a plagiarist would escape by immaterial variations.”. The test as to

-whether one work is a non- -literal copy of another requires a determina- -
tion of whether they are substantially similar.?* To that end, courts will
compare the sequence, structure, and organization of the underlying
elements that make up the work.”

, Although these broad principles of U.S. copyright law are well
settled, applying them in the context of computer programs has not been -
straightforward. That the two leading approaches, Whelan and Altai, are
as different as they are is a testimony to the landscape of confusion.®

‘Because of this confusion, computer software entrepreneurs have

-been placed in the position of not knowing the scope of copyright

- protection (and therefore the market value) for the works they create and
simultaneously not knowing what they can legitimately borrow from
existing programs. Furthermore, the consismers of Computer programs
have been left at a disadvantage whenever new sofiware technology
remains unavaifable to them because one vender cannot provide a
“migration path” to users of a competitor’s program for fear of copyright
infringement.” Naturally, these are serious externalities in the computer

“market, which is driven to both standardize and to revolutionize its

21. See id. at 362.

22. See 17U.5.C. § 106 (1994). :

23. Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930).

24, See Warner Bros. v, American Broadcasting Cos., 720 F.2d 231, 245 (2d Cir.

25. See Nlchals, 45 F.2d at 121-22. '
26. See infra text accompanying notes 51-52; ¢f Mxller supra note 14, at 1001-02
" (arguing that the Altai court merely modified the Whelan approach, but noting that some

observers, and the majority in Allai, viewed the Altai opmlon as a distinct break with the
Third Circuit’s reasoning in Hhelan). ‘

27. Amigration path is lypically a translation program that allows users of program A
to convert their own work to a format useable by program B. The vendor of program B will
write this translalor to attract users of propram A. If vendor B cannot produce a translator
without infringing on vendor A’s copyright, then the users of program A will not be able
to use program B unless they re-cater their data by hand — a prohibitively expensive
process. See Clapes et al., supra note 14, at 1503, A migration path from Lotus 1-2-3 to
Borland Quattro Pro is the center of the dispute in Lotus Dev. Corp. v. Borland Int'l, Inc.,
8§31 F. Supp. 223 (D. Mass. 1993), rev'd, 49 F.3d 807 (Ist Cir. 1995), aff'd by an equaliy
divided court, 116 $.Ct. 804 (1996) ‘

No. 2] Computer Science Concepts in Copyright Cases 245

products.” Uncertainty impedes the risk-taking inherent to innovation,
and this impedes the purpose of the Copyright Clause of the Constitution
“to promate the Progress of Science and the useful Arts.”®

- The legal world’s studious avoidance of computer science terminol-
ogy arises from the vexing reality that computer programs are a form of
expression not intended to be “consumed” by a human.”® Although a
human is the ultimate consumer of the program’s results, the program
itself is written for the machine to read and act upon.®' A reasonable
person employing five senses is not adequate to analyze such works.
Rather, the determination of the extent of copyright protection for a
computer program requires recourse {o experts who are familiar enough
with the oeuvre to identify elements that are not in fact expression and
then to identify which expression is sufficiently original to justify
copyright protection. Some courts and commentators draw analogies
between computer programs and existing copyrightable works, such as
literary works, in an attempt to simplify or avoid this problem.* Yet, the
analogies frequently create more problems than they solve. They lead
courts and theorists away from computer science — with its more precise
definitions — into a discourse unsupported by scientific rea]ity that

- obscures the underlying copyright issues.

Because computer programs are not typical expressmn and require
a fair degree of sophistication o analyze for copyright purposes, precise
terminology is required. The terms of art used in the law to define the
non-literal aspects of a computer program fit uncomfortably with

28. "See, e.g., SJ. Lichowitz & Stephen E. Margolis, Shouid Technology Choice Be a
Concern of Antitrust Policy?, 9 HARV. J.L. & TECH, 283, 290 (1996) (dlscussmg the
economic impact of selecting standards in high-tech industries).. . -

29. U.S. CONST. art. 1, § 8, cl. 8; see Menell, supra note 14, at 1049 (descnbmg :

. software copyright as the solution to the public poods problem). .

30. See, e.g., White-Smith Music Publ’g. Co. v. Apello Co., 209 U.S. 1, 16 (1908)
(superseded by statute as stated in Apple Computer, Inc. v. Franklin Computer Comp., 714
F.2d 1240, 1248 (3d Cir. 1983)) (stating that player piano rolls posed a similar problem in
trying to divine how something not easily read by a human could be copyrightable
expression).

31. Commissioner Hersey of the National Commission on New Technologlcal Usesof
Copyrighted Works proposed that compater programs be precluded from copyright and that
only their product for human consumption be copyrightable. NATIONAL COMMISSION ON
New TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL RePORT 29 (1978)
fhereinafter CONTU]. That is, copyright law would be restricted 1o expression directly
perceived for humans. His view was rejected. See id. at 27.

32. See 17 U.S.C. § 101 (1994) (“A computer program is a set of statements or
instructions to be used directly or indirectly in a computer in order to bring about a certain
resull.”); HLR. REP. NO. 94-1476, at 53, reprinted in 1976 U.5.C.C.A.N. 5659, 5666-69,
§ 102 {explaining that the term “literary works” includes computer programs); see also
TRIFPS Agreement, supra note 12 (“Computer Programs, whether in source or object code,-
shall be prutex,ied as literary works under the Beme Convention (1971) .

246 Harvard Jbu_mal of Law & Technology [Vol. 10

computer science.. The court-created phrases ‘such as “structural
‘similarities,” do not have precise analogues in computer science. For

. example, the phrase “structural similarity” between two programs could
refer broadly to how the data is organized as well as how the program
code is organized, or more narrowly to the program code itself.> There
is a tremendous factual difference among these meanings. A more
precise definition will be found by integrating computer science terms of
art into the legal discourse,

The legal commumty should not shy away from coming to terms
with “computerese.” Computers and their programs are plainly here to
stay. The lack of a precise set of terms to describe program components
has unmecessarily complicated application of copyright doctrine to
software. Without labels for the various parts of a program, courts
cannot accurately identify where the program’s copyrighted expression
ends and its non-copyrightable aspects begin, or distinguish its expres-
sive aspects from its purely utilitarian ones. Always a difficult line to

~ draw with any work, the precise identification of the work’s protectable
~ expression poses daunting problems where the werk is not naturally
readable and its components are unnamed.

Although plainly applicable to new technological forms of expres-

sion, the copyright statute itself is not specific about how to separate
protected expression from non-protected aspects of these emerging
technologies.* For traditional copyright goals to be achieved, reference
must be made to the new meanings arising within the new technological

world. Careful use of computer science terms of art and the proper.

integration of that lexicon into the orbit of copyright law will provide a
firmer foundation upon which to build a coherent jurisprudence of
computer program copyright. A more coherent doctrine derived from
more accurate computer science terminclogy will, in turn, produce a
more predictable legal environment conducive to furthering the computer

33. See, e.g., Englund, supra note 14, at 871 (defining “structure™ in terms of the

organization of programming subtasks). Many cases, specifically Computer Assocs. Int'l, -

Inc. v. Altai, Inc., 982 F.2d 693, 698 (2d Cir. 1992) and Lotus Development, Inc. v.
Paperback Software Int'l, 740 F. Supp. 37, 53 (D. Mass. 1990), cite Englund’s article as
an explanation of *“program structure™; however, his work does not directly address the
issue raised in this article. Englund’s explanation and analytical test are aimed at program

_ code organization (“control flow”) rather than data organization (“data structure”). See
Englund, supra note 14, at 901-08.

‘ 34. See 17 U.S.C. § 102(a) (19%9) (extending protection to “any tangible medium of
- expression now known or later developed™).

No. 2] Computer Science Concepis in Copyright Cases 247

software art and the “progress” encouraged by the Constitution.’® The
industry and consumers should benefit.

II. “PROGRAM STRUCTURE,” DATA STRUCTURES,
AND ALGORITHMS

Large computer programs can be divided into three basic parts.
First, there is the “user interface,”*® which includes all means by which
a user can interact with the software and the hardware.”” User interfaces
address the human side of the human-computer relationship.

Second, within the program itself, there are low-level hardware and
software drivers. They are short, fast, and compact code modules that
directly command the computer hardware. For example, one driver
controls the disk drive while another controls: the computer display
screen. The driver control modules directly perform the most elemental
level of computer input and output functions.

Third, there is a data processing section — the heart of any program.
The data processing portion of the program solves the computational
problem that the humaii has input into the computer via the user
interface. While solying the problem posed, the data processing section
may request the hardware drivers to provide it with information stored
on disk. When the data processing section needs to notify the human
operator regarding its status, it will call on the vndeo display drivers to
display the result.

The easiest copyright cases involving computer soﬁware are the ‘
ones that naturally draw upon existing copyright doctrine. For example,

-35. See Twenticth Century Music Comp. v. Aiken, 422 U.S. 151, 156 (1975) (**The
sole interest of the United States and the primary object in conferring the [copyright]
moenopoly’ . . . “lie in the general benefits derived by the public from the labors of.
authors.’”) (quoting Fox Film Corp. v. Doyal, 286 U.S. 123, 127 (1932)); see also Menell,

. supra note 14, at 1058 (“The Supreme Court has interpreted the law implementing this
Ianguage to mean that the author’s benefit is “secondary” to advancement of the arts and
sciences forsociety’s benefit.”) (citing United States v. Paramount Pictures, Inc., 334 U.S.
131, 158 (1948)).

36. “User interface” is a computer science term that describes the method or process
by which a human interacts with a computer program. Aside from the display on the
computer screen, the user interface may also include paper output and pictures, and the
input can range from inserting a credit cand into a cash machine at a bank to some kind of
advanced brain wave detectionin the future. In typical usage, however, userinterface refers
more narrowly to the screen display. We hew to this convention because the hardware
aspects of user interfaces fall under the purview of patent law. See generally RAY E
ERERTS, USER INTERFACE DESIGN {1994},

37. Examples of user interface include everything from screen displays to verbal
commands received by the computer. See gererally Pamela Samuelson, Computer
Programs, User Interjaces, and Section 102(b) of the Copyright Act of 1976: A Critigue
af Lotus v. Paperback, 6 HiGH TeCH. L.J. 209, 264 (1991) (discussing user interfaces).

248 . Harvard Journal of Law & Technology [Visl. 10

the user interface portion of a program is copyrightabie as part of an
audiovisual work.”® The principles to be applied to this aspect of
computer software are fairly well-settled and therefore will not be
addressed in this Article.”

The hardware drivers are not likely candidates for copyright
protection under existing copyright principles. Less than de minimis
creativity is involved in the creation of these small programs.*® Typi-
cally, they are written within strict hardware and software engineering
constraints.* These constraints limit the possibilities of expression,
making it improbable that the expression chosen is original.> Computer
programs do not pose new problems for copyright law on this score and
therefore will not be addressed in this Article.*’

More difficult computer software copyright questlons involve the
data processing section. Inside the data processing section lies the
collection of algorithms and data structures that actually perform the

38. We use user interface in its narrow sense: referring to the screen display. See
supranote 36; Repistration and Deposit of Computer Screen Displays, 53 Fed. Reg. 21,
817-23 (1988); see also Atari Games Corp. v. Oman, 888 F.2d 878 (D.C. Cir. 1989)
(deciding that the visual appearance of a video game was proper subject matter of
copyright); Apple Computer, Inc. v. Microsoft Corp., 821 F. Supp. 616 (N.D. Cal. 1993)
(denying “look and feel” protection for Apple Macintosh user interface); Apple Computer,
Ine. v. Microsoft Corp., 799 F. Supp. 1006 (N.D. Cal. 1992} (modifying previous order to
protect specific icons that were identically copied); Broderbund Software, Inc. v. Unison
World, Inc., 648 F. Supp. 1127 (N.D. Cal. 1986) (holding that copyright protection extends
1o a program’s audiovisual display). Public domain elements and scénes 4 faire act as
limitations on user interface copyright. See, e.g., Atari, 888 F.2d at 886.

39. See, e.g., Atari, 888 F.2d at 885-86; Apple, 799 F. Supp. at 1020; Apple, 821 F.
Supp. at 619, 626,

40. See NEC Corp. v. Intel Corp., 10 U.S.P.Q. 2d 1177, E178 (N.D. Cal. 1989) (“It
may well be that, considered alone, several of the microsequences in Intel’s microcede
consist of forms of expression directed solely by functional considerations lacking even
minimal creativity.™) {internal quotations omitted); ¢f Feist Publications, Inc. v. Rural Tel.
Serv. Co., 499 U.S. 340, 348 (1991) {discussing requirement that work exceed de minimis
standard of creativity to achieve copyrightability).

41. When writing a hardware driver, the programmer must use as few instructions as
possible in order to achieve peak execution speed. Also, the sequence of events that the
driver must request of the hardware are exacting requirements with no room for variation:
the requirements are set by the hardware itself, not by the expressive choice of the
programmer. -

42, See Feist, 499 U.S. at 348 (discussing the relationship between choices and
originality; where there are a imited number of expressive cheices, there is a presumption
ofless originality); Menell, supranote 14, at 1086; Marci A. Hamiltor ice O'Connor’s
Intellectual Property Opinions: Currents and Crasscurrents, 13 WoMEN’S RTs. L. REP.
71,75-76 (1991) (stating that where there is “no choice of amgem-: .there canbeno
creativity” in 2 compilation).

43. - See Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992); -
see also Miller, supra note 14, at 1005 n.134; Samuelson etal » supra note 11, at 2358

¢ nl97.

No. 2] Computer Science Concepts in Copyright Cases 249

computations that users demand. For example, when a program that
simulates an airplane cockpit is running, the data processing section
calculates all of the geometry necessary to present a picture to the user
and when finished, presents the picture by using the video display
bardware driver. Thus, the data processing section of a program is where
most of the creativity and critical advancement in the programming art
occurs.

The courts have created their own terminology for computer
software cases in an attempt to deal with the difficulty of applying the
law of copyright infringement to programs. Generally, copyright
infringement encompasses both literal and non-literal copying.* Literal
copying is comparatively easy to identify, even in the computer software
context. It occurs when either the source code or the object code are
copied verbatim.*® Non-literal copying in the literary works cases can
also be fairly easy to identify. For example, an author of a play could
copy certain elements from another play without taking the verbatim -
expression of the former play, thereby giving rise to a finding of
substantial similarity and infringement.** Specific terms are available to
identify the noncopyrightable elements that should be exempted from a
finding of infringement between two plays, such as scénes a faire,” plot,
and theme.* The music industry offers many examples of non-literal
copying. In those cases, musicologis's testify to the nan-literal similari-
ties between two musical compositions.*

44. See Nichols v. Universat Plctun:s Corp., 45 F.2d 119, 121 (2d Cir. 1930).

45. Source code is the human-readable version of a program that is then translated into
amachine-readable format called object code using another program called a compiler.
Apple Computer, Inc. v. Frankiin Computer Corp., 714 F.2d 1240 (3d Cir. 1983),
established that copyright in source code covers its object code translation. See 1984
Coempendium of Copyright Office Practices § 321.03 (*“The Copyright Office considers
source code and object code as two representations of the same computer program.™). A
computer itself can compare two files to see if they are exactly the same. See TH".
PROTECTION OF COMPUTER SOFTWARE — ITS TECHNOLOGY AND Appuc.mons 122-:&;\.:
(Derrick Grover ed., 1989).

46. See, e.g., Nichols,45 F.2d at 121.

47. In general, if the stracture and organization of two plays are too similar, it may be
found that one infiinges the other. See, e.g, Sheldon v. Metro-Goldwyn Pictures Corp., 81
F.2d 49 (2d Cir. 1936) However, some stories share aspects that are considered essential
components for any original story in a similar setting, called scénes faire. For example,
any play ebout pirates would likely have images of revelry at some exotic port of call. ‘Thus,
the fact that two plays contained a similar scene is not i itself evidence of copying when
comparing the sequence and organization of both plays. See Nickols, 45 F2d at 121,

48. See Alai, 982 F.2d at 709.

49. See Bright Tunes Music Corp. v. Harrisongs Music, Ltd., 420 F. Supp. 177
{S.DN.Y. 1976}, aff"d, 722 ¥.24 988 (2d Cir. 1983); see aiso Miller, supranote 14, at 1009
{“Additionally, a court is free to appoint an expert to analyze the more techrical issues in
a case, and thus need not confront complex issues unaided.™).

250 Harvard Journal of Law & Technology [Vol. 10

In computer cases, non-literal infringement has been harder to
identify. It is difficult enough for courts to compare the source or object
codes of two programs without resorting to software tools to determine
if they are identical. The difficulty in comparing two non-identical but
similar programs has driven courts to devise two tests: the structure,
sequence, and organization test and the abstraction-filtration test.

The legal notions of “structure, sequence, and organization” and
“program structure” were introduced in an attempt to define what could
be copied non-literally.*® These terms seem to be a neutral, uncontrover-
sial choice, but they obscure more than they clarify. Both tests employ
a legal description of computer sofiware concepts that glosses over the
fundamental question: what are the coraipenents of any program that
may or may not be copyrightable? The legai terms of art must be refined
in light of the underlying computer science so that they do not overpro-
tect or underprotect copyrightable aspects of computer software.

The idea of comparing computer programs in a non-literal infringe-
ment analysis was first introduced by the Third Circuit in Whelan v.
Jaslow, where all aspects of program “structure, sequence, and organiza-
tion” were considered copyrightable expression.” The Second Circuit,
in Computer Associates International, Inc. v. Altai, Inc., found program
structure worthy of protection but took a more restrictive approach than
Whelan®* Drawing upon the abstractions test devised in Nichols v.
Universal Pictures Corp.,” the court began its analysis of program

50. See, e.g., Altai, 982 F.2d 693 {introducing “program structure” as a legat term);
Whelan v. Jaslow, 797 F2d 1222 (3d Cir. 1986) (introducing “structure, sequence, and
organization” as a legal term).

51. Whelan, 797 F2d at 1224-45.

The [district] court also found that Rand Jaslow had not created the

Dentcom system independently, and that the Dentcom system,

although written in a different computer language from the Dentalab,

and although not a direct transliteration of Dentalab, was substantially

similar to Dentalab because its structure and ceverall organization

. were substantially similar.

Id. a1 1228-29. In its affirmance, the Third Circuit went on to quolte the district court
opinion: “The conclusion is thus inescapable that the detaiied structure of the Dentalab
program is part of the expression, not the idea, of that program Because there arca
variety of pregram structures through which that idea can be expressed, the strecture is not
& necessary incident to that idea.™ Jd. at 1239-40.

52. The court in Aftai stated:

Aswe have already noted, a computer program’s ultimate functionor
purposeis the composite result of interacting subroutines. Sinceeach
submutine is itself a program, and thus, may be said to have its own
“idr.a,“ Whelan's general formulation that a program’s overall
equan:s with the program’s idea is descriptively inadequate.
Alwai, 982 F 2d at 705.

53. 45F.2d 119, 119(2d Cir. 1930} (holding that background characteristics o;seu:mg

and general aspects are not considered in assessing similarity).

No. 2} Computer Science Concepts in Copyright Cases 251

structure by attempting to filter out uncopyrightable elements of the
program. Unfortunately, the court did not incorporate the computer
science terms that could define what the filtered elements ought to be.
Instead, the court in Altai employed existing copyright terminology and
doctrine applicable to other types of works, such as merger, scénes &
faire, and public domain restrictions.® The analogy once again,
however, proved to be rough and likely misleading. The court’s attempt
to explain what scénes 2 faire might be in the computer software context
is inevitably unsuccessful.*

Both courts would have been better served by piercing the surface
of computer science to understand the components comprising a
program, which include “data structures,” “algorithms,” and “lan-
guages.”™ By failing to identify these components, protection for the
program structure threatens to provide a de facto monopoly over
unnamed elements that may not deserve copyright protection.

To make coherent copyright protection in computer programs,
Professor William Patry has proposed that programs be understood as
compilations of uncopyrightable elements.”” He has made an important
contribution to the discourse on computer programs and copyright. Yet,
like Whelan, this approach rums the risk of treating computer programs
as though they have no underlying components that must be judged
separately for copyright purposes. The risk of this approach is that it too
daoes not draw a precise line between what is uncopyrightable and what
is copyrightable within a program. Even if two expressions are compila-
tions, it is often necessary to determine whether specific aspects of the
compilations are expression worthy of protection. Unless the courts
acquire more accurate terminology and understanding of the components
of computer programs, they are likely to sweep less deserving aspects of
the program under a ruling for copyright protection of the program as a
whole. Thus, we turn to a brief primer on computer science terms that
would assist courts in their copyright decisions.

54. See Altai, 982 F2d at 707-10. . ‘

55. The court in Aftai correcily points out that external factors like mechanical
considerations of the computer hardware may limit programmmer expression, see supranote
39, but then includes “widely accepted programming practices within the computer
ndusiry” as an example of scénes 4 faire, without giving further explanation. {d at 709-10.

56. Cf Davis, supra note 12, at 329 (“[R]eferences to “structure, sequence, and
organization™ as used in Whelan are inherently technically defective and afien unanswer-
able.”). :

57. See William F. Patry, Copyright and Computer Programs: It's All in the
Definition, 14 CARDOZO ARTS & ENT. [.J. 1 (1996). Note that the use of the word
“compilation” here is in the copyright law sense, not the computer science sense.

e
RO

Y
¥

,“‘2'5‘2 . ‘Hafv&'rd'.f‘oumal of Law & Technology [Vol. 10

.

‘ A A Brief Primer on Computer Science Relevant
‘ te Copyright Law

“The computer science concepts of “algorithm” and “data structure”

 are highly relevant to the software copyright discourse. Algorithms and

~data structures are twc elements of computer software that should

- ‘receive separatc consideration in software cases. Algerithms -are not

protected.by copyright because they are procedures. A data structure,

. explained in more detail below, is an organization of data in computer
. memory which permiits a given algorithm to work. Data contained in a
- data structure might be eligible for copyright as a compilation.”

" However, the dependence of algorithms on data structures means that

i copyright protection that limits the use of a given data structure may in

turn limit the use of a corresponding algorithm. Therefore, a data
structure necessary fo use a particular algorithm should not be copyright-
able. To fully undersiand this argument, algorithms a::d data structures
wﬂl be d"ﬁni:d and thelr relationship examined.

. L What Is an Aloonthm'7

1 i
An algorithm is “[a] procedure or set of rules for calculatlon or
- problem-sclving.™* Because the 1976 Copyright Act explicitly excludes
-procedures from protectmn, algérithms * are not . copyrightable.®

" Algorithms are fundamental to computer science because they are the
-calculation procedures that a computer can follow at an extremely high °
“speed to reach a desired resuit. The procedure may require a human to

develop it and prove how it works, but it requ:res only a calculating

‘l - ﬂnachme o “perform"it and reach the result. This is the “magic” that _
. makes the cotnputer such an extraordinary tool. - Fie

... Take, for example, an algorithm called Mallsort, consisting of a
51mple set of procedures for alphabetizing a-stack of mail.¥ Direct

‘C‘

W N
.-
58 Sez infra note 86 and accompanymg text. . >

- 59, THENEW SHGRTER OXFORD ENGLIEH DICTIONARY 50 (Lesley Brown ed., 1993).
60. The 1976 Copyright Act excludes processes, procedures, and methods from

. - copyright protection.. See 17-U.8.C. § 102(b} (1994); see also Donald 8. Chisum, The
- Perentability of Algonrhms 47 U, Pirt. L. Rev. 959 (1986) Pamela Samuelson, Brief
. ‘Amicus Curiae of Copyright Law Professors in'Lotus Development Corp. v. Bortand .
-~ Internationdl, Inc.;3 J.INT. PrOP. L. 103 (1995); Pamela Samuelson, Benson Revisited: The
- Case Against Patent Protestion for Algerithms end Cther Computer Program-Related
Inventions, 39 EMoRrY L.J. 1025 (1990) {hereinafter Samuelson, Benson Rews:ted]

“61._ Here is an-algorithm to' compizte the Lask

i :START MAILSORT:

‘Step'i. - Ifthe out-pile is empty, place the top envelope of lhe in-pile on the
' oui-pile, and go to Stép 5.~ ‘

e Step 2, Readthenameonthe lop mvelupeufthc m-pﬂe 'md call that the * m ‘

fi..
30

Np. 2] _':""Cqmputer Science Concepis in C opj;)fight Cases 253

copyright protection of this algorithm is barred by the Copyright Act’s

.express elimination of processes or procedures: from its zone of
‘protection.®® In addition, the Copyright Oﬁice expressly forbids

reglstenng any algorithm for copyright protecnon. However, expres-
sion describing that algorithm, whether it i='% English or a computer
language, is protected by copyright® Asz resuit, an originator could not
exert a monopoly over the Mailsort algorithm process, but could obtain
copyright protection for an original description of it. :

Every program involves an algorithm of some kind.** Obviously,
more difficult problems are solved by using more sophisticated algo-
rithms, and simple problems can often be solved more quickly using
sophisticated algorithms as well. ‘In the case of the simple mail- sorting
algorithm described-above, the larger the pile of mail gets, the longer it

.takes to sort. In fact, given N pieces of mail, the time it would take to

sort using the Mallsort algorithm would be proportional to N°, which

means that it is very slow. One proposed solution to this problem has -
been a better general purpose sorting algorithm called “Qulcksort >
whlch has been w:dei} descnbed in computer literature % !

iegs

: envclupe, : ’ :
~Step 3. - Starting at the top of the out-pile, read through names until yous fench R
- an envelope whoss name alphabetically follows the “in’ envelope
Step 4. Insert the “in” envelope into the out-pile right before that envelope:
‘Step 5. Ifthe m-pzlc-: still has an envelope in it, then go to Step 2. ‘
Step.6. 1fthe in-pile has no envelopes left, then the algorithm bas FINISHED.
This is a sciting algorithm. It may take a human a minute to understand that this -
aI gorithm will work, but having dane so, it takes no additional thought to execute it. Except
for the first envelope, which is placed on the empty out-pile to start, this algorithm works
by taking each successive piece of mail, running through the out-pile until the correct place
is found, inserting that envelope, and then plckmg up the next envelope from the in-pile.
The algorithm is finished when the m-pll(. is empty.
62. See 17 US.C. § 102(b) (1994).
63, See 1984 Compendlum of Cupynght Office Practices § 325.02(c) (1990}.
64. The expression describing a system is copyrightable, but the system itselfresides
inthe public domain. See Baker v. Selden, 101 U.S. 99, 103 (1879).

. 65 The typical software product is a program that contains a number of different
algorithms. Each algorithm is used to solve a particular aspect of the functionality prohlem
prezented by the software application.

66. See ALFRED V. AHO ET AL., DATA STRUCTURES AND ALGORITHMS 260 (1983).
It was originally reported by Charles A.R. Hoare) See Charles A.R. Hoare, chlr.sorx 5
ComPUTER J. 1, 10-15 (1962). N

Quicksort employs an algorithm that sorts at a much faster speed. It requiresa rumzmg

time proporticnal to N times the logarithm of N (algebraically Nlog(N)). As N gets very -
large, Nlog (N} becomes a small fraction of NY:Consider N=1, 10, 100, or 1000. N* would
be 1, 100, 10,000, or 1,000,000 while N[ng(N)\\.vould be 0, 10, 200, or 3000. Therefore
for 1000 pieces of mail, Quicksort would run over 300 times faster than Mailsort. The fact
that there arc better surting algm'iihms than Mailsort, however, is inconsequential to the
legal arpument. One cai:imagine a sophlst:caled &lgorithm that is the only known solution.
toan 1mpcrtant prub-:m .

an

254 Harvard Journal of Law & Technology [Vol. 10

- From the vie'wpoint of a software vendor, a faster algorithm can
make one software product outperform another at the same function,
'providing a major competitive advantage. Therefore, there is-a great
incentive for software vendors to protect their algorithms in whatever
way possible, mclud.nh by characterizing something close to the
algorithm itself as expressxon about the a]gonthm and hence protected
Yet, regardless of whether the algorithm is complicated or simple, it is
not deemed worthy of copyright protection. Protection for sngmﬁcant

advances in a]gonthm science may, however, reside ur_v‘ patent law.?

2. What Is a Data Structure?

Data structures pose a leerent problem for computer soﬁware

copyright analysis, and reveat an inherent anonaly in how the 1976
Copyright Act applies to computer programs. Fven if courts properly

_exclude algorithms from copyright protection, they may inadvertently
provide copyright protection for algorithms by protecting certain data
_structures under the aegis of program structure. This untoward result

. should be avoided by refusing to protect any data structure that 1s'

necessary to a particular algorithm, - .

- Data resides in computer memory. It is easicst to VISuahze computer
memory as being like a wall of post office boxes. Each box has a unique
numerical “address,” but the content of each box can.be changed at will.
The computer’s central processing unit (“CPU* can look at a location

in ‘memory specnﬁed by the address and retrieve the piece of data

residing there. Alternatively, thz CPU can store a piece of dataat a given
address. One! »part of a program organizes the data in such a way that the
other part, which embodies the algorithm, can work with it. The more
sophisticated the data organization, the more opportunity there is to
employ sophtsttcated algorithms that run faster and do more. Thts
orgamzatlon is referred to as a data structure.®

67. The law surrounding algorithmn patents has been in flux. See RAYMOND NIMMER,
THE LAw OF COMPUTER TECHNOLOGY § 2.06 at 2-28 (1992); Chisum, supra note 60;
Samuelson, Benson Revisited, supranote 60. Compare Gottschalk v. Benson, 409 U.S. 63,
73 (1972) {denying a patent for an algorithm to convert binary-coded decimal numbers into

pure binary numerals), with Diamond v. Diehr, 450 U.S. 175, 187 (1981) (holding thata
computer program designed to work in conjunction with a rubber molding machine Was

LN
~ N

paientable), and U.S. Patent No. 4,744,028, issued to N, Karmarkar and assigned to AT&T -

Bell Labs (for an inz7ovement on the “simplex method” of solving simultaneous linear
equations).

68. In a desktop computer, the CPU is embodied in an integrated circuit, or “chlp
The Intel Pentium chip and Motorola Power PC chip are examples. See generally DAVID
A. PATTERSON & JOHN L. HENNESSEY, COMPUTER ORGANIZATION AND DESIGN 14, 270
(1994). |

69. See AHO ET AL., supra note 66, at 13, - "\}.

@

—

-

N_o. 2] e Camputer Science Concepts in Copyright Cases 255

The Mallsort algorithm explained above employs a data structure
known as an array. Each envelope in either pile physically follows the
This is the simplest way to organize data in.
. computer memory. In terms of the post office box visualization, the in- -

-pile would initially be a row of full boxes (“in-boxes™) and the out-pile
would be a row of empty boxes (“out-boxes™). When running Mailsort,
each successive in-box would be emptied and its contents placed
. somewhere in the row of out-boxes. Obviously, for each insertion into
the middle of the row of out-boxes, the contents of all subsequent out-
boxes would have to be shifted down by one box to make room. Figure
1 illustrates how a data structure is transformed by the Mallsort

other in succession.

- Figure 1: Simple Data Arrays™

algorithm.
Before Sorting
Address Data
TOP-» 1 Rehnquist
2| Scalia
3 O’Connor
4 Kennedy
-5 Ginsburg
6 Souter .
7 Thomas
8 Breye;
9 Stevens

All algorithms depend on data structures.

TOP-+

After Solliing
Address Data

1 Brcyt-;r)
2 Ginsburg
3 Kennedy..2”
4 0',C0nn0-r
5 - Rehnquist
6 Scalia

7‘ Souter

8 Stevens
9 Thomas

In fact, certain data

structures are uniquely necessary to certain algorithms. For example, to
run a different algorithm such as Quicksort,”" the array organization
described above is insufficient; a different data structure is reguired.

70. Note that TOP remains Address 1 after sorting.

71. See AHOET AL., supra note 66, ut 260.

256 e | 'Hmd}tiqdu}hal bfLau'& T echnalogy . [Vol. 10

Qulcksort runs on a data structure called a “lmked llst "2 and can only
‘work op data organized into a linked list data structure.

The linked list is a common data structure that is signifi cantly more
complicated than the array described above. First, it requires grouping
the post office boxes in pairs and calling each pair a “cell.” Physically,

~ there is still a unique numerical address for €ach box, but the contents

are handled differently depending on whether the box is the first or the
second constituent of the cell. Returning to mail sorting, an envelope

. may be placed (with a name on it) without regard to order in the first box

of each cell — that is the data. A slip of paper that has a numerical
address of another box written on it called a “pointer” is placed in the
second box. That box is the data box of the next cell in the list. ‘This
results in two boxes being used for each envelope. Each odd box has an
envelape in it while each even one contains a pointer. Figure 2 illustrates .
how our data set of the Justices would be handled as a linked list c'.ata
structure under Quicksort. Y
In Figure 2, there is a list of nine names, each havmg a pointer to the
next cell in the lisi. Given a particular cell, the pomter is the address of
the next cell in the list.. Therefore, to store the nine names in a linked
list, eighteen memory locations are required. One “follows the pointers”
to read out the list. Starting at TOP (box 1), look at the data in that cell
(Rehnquist), then go to the address referenced by the cell’s pointer (box
3), look at the data contained there(Scalia) and then follow its pointer
(box 5), and continue until null is reached. In so doing, we have moved
down a linked list and read the names out of alphabetical order. When
the Quicksort algorithm is run, the names stay in their current boxes. -
Instead of moving them, Quicksort reassigns the pointers, including
TOP. When Quicksort is finished, it is possible to start at the new value
for TOP (box 15), follow the pointers, and read the names out in
alphabetical order. See Figure 2. None of this is possnble without the
linked list data structure. ‘ :

o

N
\

T

\\ 2
72. See generally DONALD E. KNUTH, T {E ART OF COMPUTER PROGRAMMING, VOL
1: FUNDAMENTAL ALGORITHMS (1968). \‘ ' .
=3, .
h

W
i

‘No.2] - Computer Science Cﬁhcepts in Copyright Cases 257

Figure 2: Linked Lists

Before Sert: - ’ - After Sort:
Top is Address 1 ‘ Top is Address 15
| Address | D | | Address | Dana
TOP-» 1 Rehnquist Data Item=» 1 Rehnquist
2 7| 3| pointertoNextCelte | 2 3
3 Scalia . 3 " 1 Scalia
T4 5 S T
- 5 O’'Connor : 5 O’Connor
6 7 6 o
7 ‘ ‘Kennedy 7 Kennedy
8 9 : g 5 7
9 Ginsburg 9 - | Ginsburg
10 11 7 o 10 -7
11 Souter j ‘ -) 11 . | Souter
12 1 ' 12 | n
13 Thomas ‘ - 13. Thomas
14 15 ‘ 14 ull
15 Breyer New TOP aftersori=» | 15 Breyer
16 17 284 16 9
17 | Stevens 17 | Stevens
8 ol |y o _ 18 13

i
i
I
It

Note that the data structures presented here are so basic that they e
most: 1kely part of the public domain, but that does not change the legal
argument. Advances in programming technique and algorithm develop-
ment involve creating complex data structures to facilitate equa.lly
complex algorithms.

Computer science has developed more complex daia structures in
order to enable computers to solve more complicated problems. For
example, a “tree” data structure is used for running very fast database:

258 Harvard Journal of Law & Technology [Vol. 10

algorithms.” This data structure groups boxes by threes, with each cell
consisting of a data box and two pointer boxes. One pointer points to a
“left child” cell and the other to a “right child” cell, as shown in Figure 3.
Another type of data structure is the “graph” structure.” Graph data
structures are useful for running pattern- matchmg algorithms, such as
+ those used in speech recognition or artificial intelligence. * Although the
examples of data structures provided here m /iy not be original enough to
be copyrightable, that does not mean that, & pnon, all data structures lack..
originality. Any restrictions on the us-: of a given data structure will
necessarily restrict the use of any new algomnms rloamgned to take
advantage of that particular data structure /1.

Figure 3: “Treem Data Structure’

1
\. !

I
i A
1
it

Top— | Data Item

Left Right | . -
i Pointer | Pointer; - -

s . - o
; - ~.

Cells

J;‘ .,/'-t } ’\.
"/ \\A . 28 .
Data Ttem Data Item
Left | Right Left | Right Child Cells
Pointer | Pointer Pointer | Pointer
¥ 4 ¥)

Data Item Data Item Data [tem Data Item
Left | Right Left | Right Left " | Right Lent | Right | oof Cells
Pointer | Pointer{ {Pointer|Pointer] |Pointer | Pointer| (Pointer |Pointer

YY Y Y Y Y Y

" Null Null Nell Null Null Null Null Null

73. See AHOET AL., supra note 66, at 75.

74. See id. at 3.

75. See Y. ANZAL, PATTERN RECOGNITION AND MACHINE LEARNING 3 (1992).

76. Note that the tree structure can be many levels deep, and that the Leaf Cells always

point 1o null. ;
¢

No.2) Computer Science Corncepts in Copyright Cases 259

Though this clarifies the importance of data structure to the
algorithm copyright question, it is unfortunately still unclear whether
current law has effectively carried out congressional intent to prohibit the
monopolization of algorithms through copyright.” Even though
algorithms have been explicitly excluded from copyright protection,
defining program structure in a manner that does not effectively exclude
the embedded algorithm from protection may have the unintended effect
of defeating that exclusion. Furthermnore, even if courts understand that
algorithms may not be copyrighted, they may not understand that the
protection of a data structure that is necessary to a particular algorithun
may provide a de facto monopoly over the algorithm.

B. The Legal Implications of the Dependence of Algorithms
on Data Structures

If algorithms should not receive copyright protection, neither should
any data structures necessary to particular algorithms. As demonstrated
above, algorithms are dependent on data structures because data
structures organize data within computer memory for manipulation by an
algorithm. Creating an algorithm in a computer programming language
requires organizing the data in an appropriate data structure.”™ -The
implications of this fact are enormous: restrictions on the use of a given
data structure will necessarily restrict the use of dependent algorithms. -

If a court holds that two programs are substantially similar in
program structure because the data structures are the same, that ruling
will confer a de facto monopoly over any algorithm that requires that
particular data structure to run.” For example, consider the linked list of

i

77. See supra notes 62-64 and accompanying text,

78. -A computer science reference text explains:
[W]e shall design algerithms in terms of ADT’s {abstract data lypes,

X iméger real, characier, boolean], but to implement an algorithm
in a given pmgrammmg Ianguage we must find some way of
representing the ADT’s in terms of the daia types and operators
supported by the programmizz language itself. To represent the
mathematical mode! vnderlying an ADT we use data structures,
which are collections of variables, possibly of several different data
types, connected in various ways. :
AHOET AL., supra note 66, at 13.

79. The data structures described in this Asticle are extremely common and may be part *,

of the public domain, but no case law has authoritatively said so other than Akai in dicta.
See Computer Assocs. [nt’], Inc. v. Altai, Inc., 982 F.2:1693, 710 (2d Cir. 1992) (referring
to “common programming practices™). " More lmpon.antly, future algorithm development
will gohand ir: iand with fizture data structure developmenl. A newly crafted data structure
that permits anew algorithm to run could be sufficiently original; however, it should not be
copyrightable since doing so would restrict the use of the newer algorithmn designed to rn
on it.

i

260 - 'Harvard Journal of Law & Technology [Vol. 10

“the names of the Justices described above. Assuming for argument’s

sake that the linked list structure is copyrightable, then the only party
able to use the Quicksort algorithm — or any other algorithm dependent
upon the linked list data structure — is the one holding the copyright to
the linked list data structure. This result may dramatically impede the
development of computer applications by permitting a lengthy de facto
monopoly to attach to a particular algorithm.*

By introducing simple computer science terms of art such as “data
structure” into the legal discourse, a court can make clear that separate

analysis must be given to the data structure when examining the

copyrightable aspects of computer programs. A conclusion that a given
program is in some respects copyrightable should not automatically
compel the same legal conclusion with respect to tiz data structure.
Data structures are potentially protectable under the 1976 Copyright
Act’s pravisions for the protection of compilations.” The Act designates
the “selection” and “arrangement” of data as the indicia foi' detenmnmg
when copyright protection is appropriate and further requires that the
selection or arrangement of the information be original.”? The data
structure may be expressed in code in any one of a number of ways,
which — absent merger®™ — is protected from illicit copying, whether
literal or nonliteral. Data itself is never protected.® Nor does the effort

* and investment expended in collecting data justify protection.’® But the

selection of what data to include and the chosen arrangement of that data
are legitimate candidates for protection under a compilation theory.®
A data structure has two components: the data residing in the cells
and a structure that defines how the celis are arranged. The arrangement
of the cells poses thomy problems for copyright law because of the data

80. See 17 U.S.C. § 302(a),{c) (1994) (sctting the duration of copyright protection to
the life of the author plus 50 years or 75 years if a work for hire).

81, See 17 U.S.C. § 103(a) (1994).

82. See William F. Patry & Shira Perlmutter, Fuir Use' Mls‘c‘onsl‘rued Profit,
Presumptions, and Parody, 11 CARDOZO ARTs:& ENT. L.J. 667 (1993). Compare Feist
Publications, Inc. v. Rural Telephone Serv. Co., 4399 U.S. 34, 350, 354 (1991) {finding that
a telephone book did not meet the modicum of originality), with Key Publ’g, Inc. v.

Chinatown Today Publ’g Enters., Inc., 945 F.2d 509, 514 (2d Cir. 1991) (finding the

selection process for Chinese yellow pages phone directory sufficiently original).

83. “Merger” is the doctrine holding when expression of an idea is inseparable from
the idea itself, no copyright protection is given. See 4/tai, 982 F.2d at 707. Thus, if there
are only a few ways to code 2 particular data structure, merger would preclude copyright
protection, even from literal copying. See id. at 708.

84. See Feist, 499 U.S. at 347-48.

B5. See id. at 349 (rejecting “sweal of the brow™ as justification for copyright).

86. See id at 348-49.

A

Y
N

o+

Na. 2] Computer Science Concepts in Copyright Cases 261

structure’s potentially unique fit with particular algorithms.”’ 1f the
arrangement is the only one that works with a particular algorithm,
copyright protection for the arrangement confers monopoly power over
the algorithm. Ironically, protecting a data structure in this manner uses
the compilation dectrine to dominate the market in a nonprotectable
-subject matter — the algorithm. Applying the plain terms of the statute
thus leads to.a logical conundrum: protection for a compilation confers
protection &:: an unprotectable process. Courts are left with two options:
either find the structural aspect of the data structure protected under the
compilation provisions of the Act and thus confer a monopoly on the
algorithm, or find the structural aspect unprotectable because it confers
an unacceptable monopoly on the algorithm. o

The solution to this conundrum was not provided by Congress in the
1976 Copyright Act. Rather, courts are left to resolve the conflict, using
several possible guides including the Consiitution, legislative history,
copyright policy, and the relative fit between copyright and patent
proteciion far computer software elements. Taken together, these criteria
strongly suggest that courts should choose the second solution: the
structural aspect of data structures (considered separately from the data
itself) that are necessary to particular algorithms should not be granted |
copyright protection.

The Constitution grants Congress the power to make laws “[t]o
promote the Progress of Science and useful Arts, by securing for limited
Times to Authors and Inventors the exclusive Right to their respective
Writings and Discoveries.”® Contrary to common perceptions regarding
monopolies, the copyright monopoly is, as a constitutional matter,
supposed to spur scientific and literary development.” Indeed, the

87. Tharaa wthormay select the data to be arranged in a particular data structure may
imply origina! authorship with regard to the selection step. Sze supra note 71 and
accompanying text. The selection of data that resides within the cells does not pose the
same potential for algorithm monopoly because algorithms are dependent on the
arrangement of the data and not on any particular instance of the data itself. Considering
the linked list example, itmay be original authorship to have selected the names of justices,
but that is separate from arranging them in a linked list data structure. By analogy, selecting
particular judges for a specialized phone book may satisfy the requirement of originality,
but the use of numbered pages or an alphabetical listing does not.. The focus here is upon
the arrangement of the data. I

88. US.ConsT. art. [, § 8, cl. 8.

89. The Supreme Court has noted:

Creative work is to be encouraged and rewarded, but private
motivation must ultimately serve the cause of promoting broad public
availability of literature, music, and the other arts. The immediate
effect of cur copyright law is to secure a fair return for an “author’s”
creative labor. Bult the ultimate aim is, by this incenlive, to stimulate
artistic creativity for the peneral public good.

Twenticth Century Music Corp. v. Aiken, 422 U.S. 151, 156 (1975). For a discussion of

262 - Harvard Jowrnal of Law & Technology [Vol. 10

congressionally-created Commission on New Technological Uses of
Copyrighted Works has spoken on the importance of furthering
innovation in the software industry.” Courts may presume that Congress
intended to follow constitutional directives, and therefore that the statute
is intended to effect a regime whereby innovative development of
computer software is enhanced rather than diminished. Because the
progress of computer science development is impeded by conferring a de
facto manogoly protection on algorithms through protection of necessary
data structures, this consideration weighs against protecting the data
structures necessary to certain algorithms.”!
Copyright policy generally favors extending the copyright monopoly
. only to the extent that doing so will spur further original creations.” The
statute does not provide authors absolute rights in copyrighted works, but
instead explicitly recognizes certain exceptions fo the copyright holder’s
monopoly where exercise of those rights would not induce more
authorship in the field. Most notably, the “fair use”™ affirmative defense
permits individuals to use portions of copyrighted works for certain
socially valuable purposes even if the copyright owner were to object.”

the importance of encouraging the software industry to the United States economy, see
Computer Software Rental Act of 1988: Hearing on S. 2727 Before the Subcomm. on
Patents, Copyrights and Trademarks of the Senate Comm. tn the Judiciary, 100th Cong.
2 (1988).

90. See CONTU, supranote 31, at 10-11.

91. See supra text accompanying notes 65-66 (explaming how better algorithms are
the key to better software products).

92. Forexample, the fair use doctrine allows a critic to quote portions of a copyrighted
work he is reviewing without obtaining the author’s permission. See 17 U.S.C. § 107

(1994). This type of approach was explicitly recommended by CONTU in the case of

computer software copyright. See CONTU, supra note 31, at 12; see also Menell, supra
note 14, at 1049 (finding copyright to be a solution to the public goods problem); see also
Computer Assocs. [nt’l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992) (discussing
monopoly problem with protecting data structures).

93. See 17 U.S.C. § 107 (1994); see alse Pierre N. Leval, Toward a Fair Use
Standard, 103 HARv_ L. Rev. 1105, 1108 (1990) (finding fair use doctrine justified by the
purposes of the Capyright Clause); HR. REP. NO. 102-836, at 3 (1992), reprinted in 1992
U.8.C.C.A.N. 2553, 2555 (quoting Leval’s article). Also note that 17 U.S.C. § 117
explicitly allows owners of an authorized copy of a program to make a “backup”™ cupy in
case the compuler accidentally erases the first copy.

Other restraints on the author’s rights over the work also exist. For example,
American copysizht law recognizes the “first sale™ doctrine which limits copyright holders’
rights over the corporeal versions of copyrighted works. However, the U.S. has been
extremely slow to recognize the moral rights mandated by the Berne Convention, which
would increase the scope of the copyright author’s menopoly.

[Adherence to the Berne Convention] will not, and should not,
change the current balance of rights between American authors and
proprietors, modify current copyright rules and relationships, or alter
the precedential effect of prior decisions The provisions are
intended neither to reduce nor expand any rights that may naw exist,

RS

No. 2] Computer Science Concepts in Copyright Cases 263

Such a defense has been accepted in American copyright law with the
understanding that such uses do not appreciably decrease the author’s
opportunity to benefit from her work. To the contrary, it spurs even
further creative development by fostering a competitive environment.
Likewise, prohibiting the author of a data structure from exercising
monopoly control over an algorithm through control of the data structure
copyright spurs creative development in the field.

Copyright protection for data structures that are necessary to
particular algorithms also creates a potential conflict between the
copyright and patent spheres. 1f the algorithm tied'to a particular data
structure is patented, then the copyright protection afforded the structure
permits the author to control the use (and profitability) of the patented
algorithm. Thus, copyright protection of a data structure necessary toa
particular algorithm can impede innovation i algorithms by diminishing
the power of the algorithm’s patent holder during the comparatively short
patent term of protection to exploit the work.”® This devalues the patent

nor to create any new rights under federal or state statutes or the
" common law.
BERNE IMPLEMENTATION ACT, S. Rep. No. 100-352, at 10 (1988), reprinted in 1988
U.5.8.C.A.N. 3706, 3715. Bur see 17 U.S.C. § 109X 1XA) (1994) (prohibiting rental of
Iawfully purchased copies of phonorecords and computer programs).
94. A collision between patent law and copyright iaw would also occur if both laws
, considered data structures as subject matter. Parent law has far mtre stringent requirements
than copyright law before conferring a monopoly. Itis important to note that a patent was
issued fora “data structure” to Lowry, who then assigned it to Digital Equipment Corp. See
Inre Lowry, 32 F.3d 1579 (Fed. Cir. 1994). This was a specific organization of data for
use within computer-aided desipn and manufacturing systems. The patent examiner initially
rejected the patent application as improper subject matter, but was reversed by the Federal
Circuit. The Federal Circuit held that because the “data structure™ resided in computer
memory, it was a method to be used with a machine and therefore the case fell under the
holding of Diamond v. Diehr, 450 U.S. 175 (1981). See id' Patentability of data
organization methods is beyord the scope of this Article, although the same relationship
between data structures and algorithms exists regardless of what law is appl:ed. See supra
note 71 and accompanying text.

95. Note that there are many cases of ane programmer making an improvement to
another’s existing algorithm. Those improvernents would be less profitable if the use of the
data structure they both use were restricted by copyright.

For discussion of the conflict between patent and copyright coverage of computer
software, ses Reichman, Legal Hybrids, supra note 11, at 2486; Samuelson, Senson
Revisited, supra note 60; John Swinson, Copyright or Patent or Both: An Algorithmic
Approach ro Computer Safiware Protection, S Harv.J.L. & TECH. 145, 212 (1991); see
also Dennis S. Karjala, Recent United States and International Development in Software
Protection (Part 1}, 16 EUR. INTELL. PrOP. REV. 13 (1994); Recent United States and
International Developments in Software Protection (Part 2), 16 EUR. INTELL. PROP. REV.
58(1994) (arguing that copytight law should be applied to computer programs in a way that
avoids distortion of the distinctions between patent and copyright law).

Computer languages as intellectual property may be better governed by patent law.
An argument can be made that computer languages are patentable subject matter, A

264 Harvard Journal of Law & Technology [Vol. 10

protection and results in disincentives to produce newer and more
sophisticated algorithms which are dependent on the data structure and
a deceleration in the progress of computer sciente. Given the high cost
of bringing software to market™ —— in the millions of dollars — such a
devaluation of patent protection and the resulting disincentives are lilzely
to cause considerable harm to the progress of computer science.”” Thus,
courts must be extremely careful to recognize the algorithms and data
structures that exist within the program structure and also be sensitive to\g
the implications of approving copyright protection for a particular data’
structure.

In sum, all of the enumerated indicators weigh against the copy-
rightability of data structures necessary 0 particular algorithms.
Although Congress would do well to make this rule clear in the statute,
the legal analysis is available which can result in the proper allocation of
property rights in data structures and algorithms — data structures
necessary to particular algorithms should not be given copyright
protection even if they satisfy the requirements of a compilation.”

-

U
P

computer language can be considered an algorithric process for converting one set of
symbols (“source code™) into another set {(“object code™). Algorithms have been found to
be patentable subject matter under 35 U.S.C. § 101. See Karmarkar, U.S. Patent No.
4,744,028, Languages developed in corporate R&D labs, like C, C++, and Java, are
sufficiently novel upon their release to satisfy the priority requirements of patent law under
35U.8.C. § 102. Some languages, like LISP, C, C++, and Java, were radical departures
from the prior programming art and therefore satisfy the statutory requirement for non-
obviousniess. See 35 US.C. § 103 (1994). Furthermore, for those kinds of languages the
objective indicators of market success and long-felt need might also support a finding of -
non-obviousness. Cf Hybritech, Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367, 1382
(Fed. Cir. 1986) (discussing market success as an indicator ofnon-obviousness). Some of
the problems associated with amonopoly over a computer language (see Part [V.B) may be
mitigated in the patent sphere through the doctrine of patent misuse. Although controver-
sial, this aspect of patent law could prevent a patent holder in a compuler language from
using that menopoly to block consumers from migrating toward competing languages or
program applications. Cf Windsurfing Int’l v. AMF, Inc., 782 F2d 995, 1001 (Fed. Cir.
1986) (discussing the patent misuse doctrine).

6. “[S]oftware development now costs five to 15 times more than hardware
development an atypical embedded processor project.” itzrnard Cole, Embedded Systems:
Part I: Chips and Toels, ELECTRONIC ENGINEERING TIMES, Feb. 5, l9°u, at 45, available
in 1996 WL 7975419,

97. See Computer Software Rental Amendments Act of 1988: Hearmg onS. 2727
Before the Subcomm. on Patents, Copyrights and Trademarks of the Senate Comm. on the
Judiciary, 100th Cong. 2 (1988) (statement of Sen. Orrin G. Haich); see afso Peter S.
Menell, An Analysis of the Scope of Copyright Protection for 4 pplicatios Programs, 41
Stan. L. REv. 1045, 1058-71 (1989) {discussing economic analysis of con wster program
copyright issues). e

98. The decision to include particular data may still be copynghtab\\ [t is only the
architecture ofthe data structure that should be prohibit=d from pretection under this theory.

No. 2] Computer Science Concepts in Copyright Cases 265

v

IV, “PROGRAM STRUCTURE” AND COPYRIGHT
OF A COMPUTER LANGUAGE

The other noncopyrightable component of computer programs that
st ~uld not be swept within the protection of a program structure is
computer language and its attendant grammar. This Part will demon-
strate that computer languages do not qualify for copyright protection,
but if the legal term program structure is given too much breadth, de
facto monopely over both computer languages and their attendant
grammars will follow. Once again, computer science c: - help us refine
the meaning of the legal term “program stnicture” so thai . ~re straight-
forward copyright analysis can ensue. In particular, the te.. program
structure should exclude computer language grammar to srevent
copyright in a computer language. Before arguing that copyright of a
computer language is not legally justified, we turn our attention to 2
definition of computer language.

[

B
A. Whatis a Computer Lanzuage?

Computer languages are composed of a set of grammar rules and a
set of symbols.” The typical computer language grammar is “context-
free,”'® which means that a sentence written in the computer language
can be analyzed ‘o find its grammatical construction without any need to
understand the meaning of the words. This is essential because
computers do not understand meanings: they are simply machirizs that
manipulate symbols.'"

To illustrate how context-free languages work, consider how an
English speaker, without knowing what a “smorg” is, nor what it is to
“vit,” can parse the silly sentence: “The smorg vitted the blag.” First,
we know where the sentence begins and ends, and using ons grammati-
cal rule, we decompose the sentence into a subject and an object phrase:
“smorg” is the subject, and “vitted the blag™ is the object phrase. We use
another grammatical rule to decompose the object phrase into its
constituent pieces: *“vit” is the verb, and “blag” is the object. Thus, we

99. See JEAN-PAUL TREMBLAY & PAUL G. SORENSON, THE THEORY AND PRACTICE OF
COMPILER WRITING 30-31 {1985).

100. See JouN E. HOPCROFT & JEFFREY D. ULLMAN, INTRODUCTION TO AUTOMATA
THEORY, LANGUAGES AND COMPUTATION 233 (1979) (“[M]odem compiler writing systems
usually require that the syntax of the language for which they are to produce a compiler be
described by a context-free grammar of restricted form.™).

101. Natural languages, like English, are distinct from typical computer languages
because they are context-sensitive: the meaning of the wards can affect the grammatical
structure of a sentence.

266 Harvard Journal of Law & Technology [Vol. 10

have deduced the components of the sentence without understanding the
meaning of the words. This sort of formalism makes computer lan-
guages work.

A context-free computer language is useful because its grammar can
be used mechanically to generate correct sentences in the computer
language or to check that a given sentence is within the set of acceptable
sentences in that computer language. Understanding this mechanical
function depends on one further distinction: the symbols used by a
computer language are either “terminal” or “non-terminal.” Those which
are ferminal cannot be decomposed into other symbols. Considering the
context-free example in English above, “smorg,” “vit,” and “blag” are
terminal symbols. “Subject phrase” and “object phrase” are also
symbols in English, but they are non-terminal because they can be
decomposed further using grammatical rules. In formal language theory,
then, a computer language G with a context-free grammar is defined as
the quadruple ¥, E, R, S, where ¥ is the entire set of symbols used by
language G, E is the set of all terminal symbols, R is the finite set of
grammatical rules that transform non-terminal symbols into constituent
terminal and non-terminal symbols, and S is the start symbol that tells the
computer there is a sentence to parse.'®

Using this formalism, a computer program called a “parser” can be
written that accepts strings of symbols consistent with the grammar and
rejects those that are grammatically incorrect.'® The acceptance of a
string of symbols by a parser is the first step any computer program takes
when it responds to symbolic input. [f the string is accepted, the parser
will have constructed a tree data structure'™ that represents the grammat-
ical construction of the sentence it was presented.

A computer mechanically responds to instructions that are presented
to it in binary code through combinations of ones and zeros.'” Humans
cannot easily read binary instructions; therefore, we prefer to write
programs in an understandable computer language (“source code™) and
then use a compiler program to translate that computer language into

_binary-coded instructions (“object code™). These are the instructions that
the computer hardware can respond fo without interpretation.

For example, consider the statement X = 4 + B. A computer will
parse this statement in the following manner. First, the parser uses a
grammatical rule that the value of any expression after the “=" sign must
be assigned to memory location X. Another rule specifies that expres-

102, See TREMBLAY & SORENSON, supra note 99, at 31.

103. See ROBERT SEDGEWICK, ALGORITHMS 307 (1988).

104. See supra notes 73-76 and accompanying text.

105. See generally PATTERSON & HENNESSEY, supra note 68, al 270; see also supra
Part 1L

No. 2] Computer Science Concepts in Copyright Cases 267

sion’s value to be the result of an addition. Finally, the inputs to the
addition will be specified as the contents of locations 4 and B. The
resulting parse trees for both this example and the silly sentence example
are presented in Figure 4.'%

Figure 4: Parse Trees'”

“The smorg vitted the blag” X=A+B

Sentence: “The smorg vitted thz blag” =

TN AN

Subject: The smarg Object Phrase X +
Verb: vitted Object: the blag A B

Any computer program that is supposed to generate or accept
sentences in a computer language requires some kind of parser.'® The
computer program that parses input sentences (or generates sentences)
{rom a given computer language G must contain within it some version.
of the quadruple ¥, £, R, S.'"™ This typically requires''® that the program

106. Once the statement is parsed, the compiler generates object code starting at the
bottom of the parse tree and working up. This process is called “bottom-up” parsing. See
TREMBLAY & SORENSON, supra note 99, at 52. It first produces a computer instruction that
meves the content of a memory location to the inputs of the addition unit of the CPU. See
supranote 8 (explaining CPU}. This is done twice: once for the content of 4 and once for
that of B. An instruction for the compuler 10 add is then produced. Finally, the compiler
produces an instruction that moves the resulting sum to memory location X.

As a result of compiling, the single statement X'= 4 + B is translated into these four
(hypothetical) 8-bit binary instructions that tell the CPU to perform these four steps in
sequence:

1. *10011101" (move contents of Memory Location 4 to the Addition

Unit Input #1) .
2. “10011110" (move contents of Memory Location B to the Addition
Unit Input #2)

3. “10101110" (execute the sum of the inputs)

4, “10111100" (move contents of the sum into Memory Location X)

107. Each“leaf” is anindivisible symbol, therefore a““terminal” symbol. Each non-leaf
node represents a non-terminal symbol. Each niode in the tree represents the application of
a grammar rule.

108. See SEDGEWICK, supra note 103, at 269.

109. See id

110. The other choice is to create alist of all possible sentences in G, a task that is likely
to be impossible. See TREMBLAY & SORENSON, supra note 99, at 31.

268 Harvard Journal af Law & Technology [Vol. 10

access a file listing all of G’s symbols and all of (’s grammatical
rules.'" Without such a list, the human equivalent would be to hand
someone a German dictionary but no grammar text and demand she

- translate sentences. Figure 5 iilustrates how an input sentence is parsed
generally.

Figure 5: Parsing an Input Sentence

How Data Processing Programs Use a Parser and Grammar To
Read Sentences in Language G:

Sentences in Language G P Parger » Data Proc 2
T Engine
Language G:
Grammar Rules
Symbols

The application of parser programs is not limited to converting
human readable source code into machine executable object code.
Parsers are needed almost anytime two programs intend to communicate
by sharing command sequences or data files. Parsing is essential when
computer files are to be translated from one format to another; it is the
first step along a migration path.!"?

If it were possible to prevent a programmer from using a language
specification G (i.e., some V, E, R, §), or even just the grammar R of
language G, it would be impossible for that programmer to write a parser
for G. If a programmer is prevented from writing a parser in G, she will
be unable to use language G to communicate between her programs or
data files and whatever other programs use language G to communicate.
This is an example of blocking a migration path by preventing translation
of the language G.

11]1. See SEDGEWICK, supra note 103, at 270. Another type of parser program builds
the grammatical rules directly into an algorithm. These programs are known formally as
“finite automata.” The grammar rules are represented inside the automata as a list of “IF-
THEN-ELSE” conditions that select program behavior based on each new symbol presented
to the program. In other words, for each new symbol presented, the program will decide
which state to go into based on its current state and the next new symbal in the sentence.
Nonetheless, both methods of parsing (using a table of rules or a finite aulomata) are
equivalent. See HARRY R. LEWIS & CHRISTOS H. PAPADIMITRIOU, ELEMENTS OF THE
THEORY OF COMPUTATION 102 (1981)

112. See supra note 27 (defining migration path and explaining its importance in
copyright law).

No. 2] Computer Science Concepts in Copyright Cases 269

B. Computer Languages Should Not Be Copyrightable

The Copyright Act of 1976 does not directly address the copy-
rightability of computer languages.'” Computer languages should not be
copyrightable subject matter for two reasons.'" First, language copyright
is doctrinally suspect because that would provide copyright protection
for expressions not yet fixed. Fixation, of course, is a prerequisite for
copyright protection.''® 1f the author of a computer language scught to
claim copyright protection for a computer language, either of two files
would have to be covered: a list of all possible sentences in that
language, or an expression of its specification (i.e., a copy of the
quadruple ¥, £, R, S) that fully describes the language. The first choice
is likely to be impossible: a computer language contains a huge number
of possible sentences, possibly of unbounded size. Although more
practical, the second choice is problematic: the specification only tells
us how to decide whether a given sentence is within the language and is
not fixation of the sentence itself. If the given sentence has been fixed
for the first time by a party other than the hypothetical copyright holder

113. The text of the statute does not mention computer language. See 17 U.S.C. §
102(b}(1994). CONTU does not address the copyrightability of computer languages either.
See CONTU, supra note 31 The only inkling that the Copyright Office has given thought
to this is in the 1984 Compendium of Copyright Practices § 325.02(c) (including under the
heading “Noncopyrightable elements” the entry “language (alone)” without any further
explanation).

The cases are no more illuminating. The courtin Bull HN Info. Sys., Inc. v. American
Express Bank Ltd., 1990 WL 48098 (S.D.N.Y. Apr. 6, 1990), studiously avoids confronting
the defendant’s claim that a computer language is not subject to copyright. See id. at*2n.2,
The only other cases that cansider copyright of a language are the so-called “code book™
cases. See Brief English Sys., Inc. v. Owen, 48 F.2d 555 (2d Cir. 1931) (finding that
shorthand technique, as a language, was not copyrightable); Reiss v. National Quotation
Burean, Inc., 276 F. 717 (8.D.N.Y. 1921) (holding that a book of meaningless code words
was copyrightable); but see NIMMER, supra note 68, at § 1,06, 1-47 (“A programming
language constitutes potentially copyrightable subject matter. [They are} compilations of
commands and terms developed by a particular author").

114. See Richard H. Sten, Copyright in Computer Programming Languages, 17
Rutcers CompUTER & TECH. L.J. 322 (1991) (finding language uncopyrightable for the
following two reasons: that language is a process, and that some languages are ideal to
solve certain programming problems and, therefore, merger applies); see also Elizabeth G.
Lowry, Copyright Protection for Computer Languages: Creative incentive or Technologi-
cal Threat?, 39 EMORY L.J. 1293, 1296 (1990) (reasoning that languages are a system and
hence unprotectable by copyright); John P. Sumner & Steven W. Lundberg, Patentable
Computer Program Features as Uncopyrightable Subject Matter, 17 AM. INTELL. PROP.
L. Ass’NQJ. 253 (1989) (finding a computer language uncopyrightable because itis a
system, but possibly patentable). Lowry’s treatment of computer languages lacks
mathematical rigor yet raises a host of legitimate and interesting issues, most notably that
the Lotus I-2-3 macro language satisfies the definition of a real computer language. See
Lowry, supra, at-1296. '

115, See 17 US.C. § 102(=) (1994).

270 , Harvard Jovrnal of Law & Technology [Vel. 10

in the language, the quadruple ¥, E, R, § can be used to determine if that
sentence is within the supposedly copyrighted language. If that
determination supports a claim of infringement, then it would be
infringement of an expression not previously fixed. This is contradictory
to the statutory requirement that an expression must be fixed to be
copyrighted.

Second, even if language copyright were consistent with copyright
principles, it would violate First Amendment principles.''® By authoriz-
ing protection for languages, the Act would be authorizing prior restraint
of any expression in that language.'” If a programmer cannot lawfully
include a copy of the grammar in a parser program, the parser cannot
lawfully create expression in that language. Similarly, a parser could not
lawfully read any sentence in that language. It is not clear that just
because such expression is machine-generated it is not protected by the
First Amendment: the law already recognizes that machine-generated
expression — the output of a video game, for example — is protected by
the Copyright Clause.''®

Although copyright law does not violate the First Amendment when
it permits individuals to preclude others from substantially copying their
original expression, it exceeds First Amendment boundaries when it
. permits authors to own the rights to form any expression from the
building blocks of language.”? Indeed, protection of linguistic building
blocks impedes the progress of originality sanctioned by the Copyright
Clause in addition 1o violating the First Amendment rule against
suppressing speech before it has been expressed.

The implications of copyright in a computer language are extreme:
if a language can be protected through copyright in its specification (i.e.,
the quadruple V, E, R, S), then any use of the language would have to be

116. Computer program source code has been found protected speech. See Bernstein
v. U.S. Dep™t. of State, 922 F. Supp. 1426, 1436 (N.D. Cal. 1996) (“For purposes of First
Amendment analysis, this court finds that source code is speech.”); see also Karn v U.S.
Dep’t. of State, 925 F. Supp. 1, 9 (D.D.C. 1936) (*{T]he Court will assume that the
protection of the First Amendment extends to the source code . .).

117. For examples of prior restraint cases see, for example, Nebraska Press Ass'n v.
Stuart, 427 U.S. 539, 556 (1976); New York Times Co. v. United States, 403 U.S. 713,713
(1971); Near v, Minnesota, 283 U.S. 697 (1931).

118. See Atari Games Corp. v. Oman, 888 F.2d 878 (D.C. Cir, 1989).

119. Therestriction of expression to protect an idea has been found unconstitutional by
the Supreme Court: “[Clopyright’s idea/expression dichotomy ‘strike([s] a definitional
balance between the First Amendment and the Copyright Act by permitting free
communication of facts while still protecting an author’s expression.” No author may
copyright his ideas or the facts he narrates.” Harper & Row, Publishers, Inc. v. Nation
Enters., 471 U.S. 539, 556 (1985) (citations omitted).

No. 2] Computer Science Concepts in Copyright Cases 271

licensed since use of a language requires a parser program which must
contain the specification of the language.'?

The dependence of a parser program on the quadruple V, E, R, S is
strong: the same proeblem would arise even if only the set of grammar
rules R is pratected while the symbols (elements of ¥) are in the public
domain. As explained in Part IV.C., it is no solution to say that there
could be two different expressions of a given language specification or
grammar. Any two distinct expressions of the same language specifica-
tion will always contain the same inherent hierarchy among the symbols
that under traditional non-literal similarity tests will support an infringe-
ment claim.

That “major” computer languages are already in the public domain
does not solve the conundrum. For example, Sun Microsystems has
made a major investment in creating Java, which is designed to make it
easier to write internet-based graphical user interfaces. Sun has
recognized the large potential value of a computer language as intellec-
tual property and currently requires programmers to sign a licensing
agreement if they wish to use Java or to write a compiler that implements
Java.' Microsoft, a Java licensee, has created its own extensions to
Java that optimize Java for use with their Windows operating system.
Such language extensions are the natural adaptations of existing
computer languages to new computing environments.'”? Microsoft’s
extensions to the Java language could make their Java compiler more
attractive than Sun’s compiler. Sun is now positioning itself to prevent
Microsoft from running away with the language standard by promoting
an industry standards committee including itself but not Microsoft.'? If
computer languages really are copyrightable, Sun could sue Microsoft

120. See supra Part IV.A. For program A to communicate in language L, it must
contain its own copy of L’s grammar. If that grammar has already been copyrighted, then
distributing copies of program A will infringe on the existing copyright in L’s
grammar.

121. See Sun Microsystems Inc., Technoiogy License and Distribution Agreement 1
{April 1996) (“WHEREAS Sun wishes to license its Java programming language . . .”) (on
file with author). Interestingly, the contract refers to the “Java Language Specification™ as
part of the technology documentation but not directly as the technology. Instead, the
technology is a set of files that contain object class descriptions for implementation of Java.
These files would play the role of a language grammar file analogous to the menu tree in
Latus Dev. Corp. v. Borland int'l, Inc., 831 F. Supp. 223 (D. Mass. 1993), rev'd, 49 F.3d
807 (Ist Cir. 1995), aff’'d by an equally divided court, 116 S. Ct. 804 (1996). See supra
Part [V.D.

122. For example, the very popular C++ computer language was developed as an
extension of the now less fashionable C language. See BJARNE STROUSTRUP, THE CH++
PROGRAMMING LANGUAGE 627-28 (24 ed. 1991). Competing software companies now
release C++ compilers that include new extensions to the language to attract programmers
to buy their product.

123. See supratext accompanying note 6.

272 Harvard Journal of Law & Techrology [Vol. 10

for creating an unauthorized derivative work. Even more disturbing is
that the company could demand licenses from other application
programmers who intend to use their compiler to write other software
products: they would be using a copyrighted language. This would
impede the progress of computer programming because entrepreneurial
software ventures that might become a threat to a large manufacturer
could be instantly shut down if the large manufacturer terminated their
license to use the computer language extensions.'*

The existence of other programming languages or language
extensions does not solve the problem because the software entrepreneur
will be forced to select a compiler not on the basis of its technical merits
or consumer demand but rather based solely on the terms offered by the
copyright monopoly holder. Larger companies with larger research and
development staffs will have better — or at least more widely employed
— compilers and at the same time will likely offer more onerous
licensing terms. The new venture must either use inferior compilers or
succumb to the demands of the larger company. This is an undesirable
extemnality resulting from computer language copyright.” In sum,
copyright in computer languages is at odds with both the statute and the
First Amendment, and uses the copyright monopoly to impede the
progress of computer science.

C. “Program Structure” and Non-Literal Infringement
of a Computer Language Grammar

A key observation about a set of grammatical rules is that they must
necessarily create a hierarchy among the symbols contained in the
language. This is so because one characteristic of grammatical rules is
that they specify how the non-terminal symbols of the language can be
decomposed into their constituent symbols.

In the context-free English example, we know that the following
sentence does not make sense because the word order is incorrect:.
“Vitted the blag the smorg.” That observation is a result of our recogni-

124. Such an action would theoretically be proscribed under the antitrust laws, but
. depending on antitrust laws 1o fix problems in copyright doctrine is foolish. Cf. Alfred Bell
& Co.v. Catalda Fine Arts, Inc., 191 F.2d 99, 106 (2d Cir. 1951) (“We have here a conflict
of policies: (a) that of preventing piracy of copyrighied matter and (b) that of enforcing the
anti-trust laws. We must balance the two . . . {on these facts] we think the enforcement of
the first policy should outweigh enforcement of the second.”); see also Rosemont v.
Random House, 366 F.2d 303 (2d Cir. 1966) (*Thus, it is not the fact of a constitutional and
statutory monopoly which is disfavored, only abuses of the lawful monopoly.™)

125. See CONTU, supranote 31, 2t 23 (“One of the hallmarks of 2 competitive industry
is the ease with which entrepreneurs may enter into competition with firms already doing
business.”™).

No. 2] Computer Science Concepls in Copyright Cases 273

tion that there is no rule that decomposes a sentence with the verb “vit”
first.'” In other words, we must successfully decompose the sentence
into a subject phrase followed by an object phrase before we decompose
the object phrase itself. This hierarchy results from the grammatical
rules of English and would be inherent in any expression of those rules.
In the computer language example above, the sentence 4 + B = X'is
incorrect because the “+” rule cannot be exercised before the “=" rule.
That hierarchy is why the parser would reject the sentence 4 + B = X as
not belonging to the language,

At some level of abstraction, ali possible expressions of a given
grammar will contain the same hierarchy among the symbols because
that is the hierarchy inherent in the relationship between the nan-terminal
and terminal symbols of the language. If the legal term program
structure is deemed to include the grammatical hierarchy in a given
language G, then any implementation of a parser for language G, which
necessarily will contain that hierarchy, will infringe on ary other
instance of that hierarchy through the non-literal similarity test.
Therefore, no program could be written to read or write language G
without infringing on tire copyright in the grammar of G.

In conclusion, if grammatical mles and symbols are copyrightable,
then copyright law has once again introduced a conundrum. As
demonstrated earlier, providing copyright protection to grammatical rules
and symbols confers a de facto monopoly over any sentence within that
computer language whether fixed or not.'”’ Therefore, the legal term
program structure should exclude from copyright protection any
expression of a language specification or the inherent hierarchy among
the symbols contained in it. This prevents de facto monopoly over
computer languages as a result of copyright in language specification.'”

126. In English, this is because of the tense of the verb “vit.” If the sentence started
“Vitting carefully, the smorg . .. ,” then a rule would allow decomposition with the verb
first. Similarly, the verb “is” would be acceptable at the beginning: “Is this your smorg?”’
This, however, moves beyond the scope of the example.

127. Thisaspect of formal language theory is the essence of Lotus’s goal in its lawsuits
against Paperback and Borland with respect to the “Key Reader’” macro language discussed
below. See Lowry, supra note 114, at 1294. Lotus’s original complaint included
infringement of the macro language.

128. We are not advocating excluding copyright of human readable specifications of a
language, i.e., textbooks that teach humans how to understand and write in a language. This
legal proposition is limited to expressions of language grammar for use by the computer
itself.

274 Harvard Journal of Law & Technology [Vol. 10

D. Computer Language Grammar, Copyright,
and Lotus v. Borland

Examination of the Lotus Development Corp. v. Borland Interna-
tional, Inc.'® case is an excellent way to observe how inaccurate
terminology introduces unintended externalities into the software
copyright doctrine. By revisiting Lotus v. Borland with accurate
computer science terminology, we can demonstrate how improved
software copyright analysis will result.

Cansidering Lotus v. Borland in light of our understanding of
computer languages leads to the conclusion that in one portion of the
suit, Lotus could have obtained a monopoly over a computer language
they devised."”® The two spreadsheet programs at issue do not express
the idea of a spreadsheet program using the same expression but rather
are only similar in their purposes and results. To enhance the utility of
Lotus 1-2-3, a Lotus 1-2-3 user typically writes her own small programs
{using the “macro language™) that encompass repetitive sequences of
Lotus 1-2-3 commands.'””’ Each sequence is assigned to a single key on
the computer keyboard: when that key is pressed, the correspending
sequence of commands is sent to Lotus 1-2-3. This aspect of the dispute
centers on the fact that Borland’s Quattro Pro program contains a “Key
Reader” program that accepts the same symbolic sentences that are
accepted by the Lotus 1-2-3 program."? Having parsed these sentences,
it is able to control the Quattro Pro program to produce the same result
as if Lotus 1-2-3 had been running. A diagram of the process is shown
in Figure 8. [n human terms, this is equivalent to having a language
transiator work between two individuals with different native languages.

129. 831F. Supp. 223 (D. Mass, 1993), revd, 49 F.3d 807 (1st Cir. 1995), aff 'd by an
equally divided court, 116 S. Ct. 804 (1996).

130. Lotus also raised other issues not addressed in this Article, most importantly
whether a program that had a user interface substantially similar in organization to Lotus
1-2-3 infringed on the copyright in its user interface display. See Lotus Dev. Corp. v.
Borland Int’l, Inc. 788 F. Supp. 78, 81 (D. Mass. 1992).

131. See Lotus, 49 F.3d at 809.

132, Seeid.

No. 2] Compuier Science Concepts in Copyright Cases 275

Figure 6: Reading Sentences in the Lotus 1-2-3 Macro Language

How the “Key Reader” uses the “Menu Tree File” to Read
Sentences in Lotus 1-2-3 Macre Language: ’

Barland Quattro Pro
———» Data Processing
Enginec

Sentences in Lotus 1-2-3 Key Reader
Macro Langoage »> {Parscr)

A
|

“Menu Tree File™ containing:
Grammar Rules
Symbols

If the Key Reader parsing program cannot read Lotus 1-2-3 macro
language sentences, then users who want to switch to Quattro Pro from
Lotus 1-2-3 would have to rewrite their macro programs to conform with
Quattro Pro’s macro language.’” The significance of this result is that
consumers of commercial software will be forced to choose between re-
writing their macro command programs by hand or passing up the
opportunity to use a competitor’s preferred product because there is no
migration path between the new product and their existing software,
More generally, it opens the door to the possibility that a software
consumer cannot simply apply a translation program to his work to
switch from using one vendor’s product to using another’s.”** This
capacity to block a migration path for software consumers is anti-
competitive rather than the result of a legitimate copyright monopoly.**

Judge Keeton found infringement in the Borland Key Reader
program because it contained a file that described the entire menu
hierarchy of Lotus 1-2-3:

Put another way, the point is that to implement Key
Reader],] Borland used a program file containing the
same copy of the 1-2-3 menu tree structure and com-
mands that Barland had used in its emulation interface,

133. See id. al 821,

134. Translation would be accomplished with a program quite similar to a compiler. See
supra Part IVA,

135. See CONTU, supra note 31, at 23 (finding that anti-competitive practices are
beyond the scope of patent and copyright protection); see alse Clapes et al., supranote 14,
at 1560 (“[Narrow protection is warranted to prevent] giving authors of original programs
the power to preclude others from writing programs that interact with those original
programs. Ifvalid, such concerns would be serious indeed.”); Paul Goldstein, fnfringement
af Copyright in Computer Programs, 47 U, PiTT. L. REV. 1119, 1129 (1986) (reasoning
that in cases not rising to the level of misuse, courts could seek to resolve the compatibility
issue through the docirine of fair use).

276 Harvard Jouwrnal of Law & Technology [Vel. 10

but with each menu command name stripped of every-
thing after the first letter. Borland then appended this
copy of the “stripped menu tree” to its quattro.mu file
.. .. In sum, to interpret macros, Borland’s programs
use a file with phantom menus consisting of a virtually
identical copy of the Lotus menu tree that Borland used
for its emulation interface, but with only the first letter
of each menu command name where the complete
menu command name previously appeared,'®

According to Judge Keeton, Borland’s Key Reader infringed not
because of literal copying of the Lotus menu screen, but as a result of the
non-literal copy of the Lotus command menu hierarchy within the hidden
Borland file."” He did not address the question of the menu hierarchy
as a computer language grammar. The Court of Appeals reversed and
held that the Lotus 1-2-3 menu command hierarchy was a method of
operation and hence uncopyrightable.™ Although this decision
ultimately prevents an anti-competitive monopoly over a grammar, the
court did not face the macro language grammar issue head-on. Once the
menu hierarchy was found uncopyrightable, Borland’s non-literal copy
of the menu was non-infringing as a matter of law."”* The Supreme
Court did not confront the computer language grammar issue because it
was equally divided on the case and therefore affirmed without opinion
the decision of the Court of Appeals.'* In examining this history, the
intention is not to reargue the case but rather to consider Judge Keeton’s
district court apinion as a symptom of the problem presented: that to
ignore basic computer science concepts when deciding software
copyright cases produces bad case law.

The “stripped menu tree” file identified by Judge Keeton is a
representation of the symbols and grammatical rules that define the Lotus
1-2-3 macro language.”' This list is necessary for the Borland Key

136. Lotus Dev. Corp. v. Borland Int’l, Inc., 831 F. Supp. 223, 228-29 (D. Mass. 1993).

137. See id. at 224.

138. See Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (Ist. Cir. 1995).

139, See id at 819.

140, See Lotus Dev. Corp. v. Borland [nt'l, Inc., 116 S. Ct. 804 (1996).

14]1. Anirony is that the judge had been presented the language issue before in Lotus
Development, Inc., v. Paperback Software International, 740 F. Supp. 37, 53 (D. Mass.
1990). and regarded the argument as a “word game™: “An even mare striking word-game
argument is defendant’s contention that in Copying the 1-2-3 user interface, they have only
copied a language, and that languages are not copyrightable. . .. I conclude that defendant’s
language argument about the macru facility of Lotus 1-2-3 is totally without merit.” /d.
at 73. See Samuelson, supra note 37 at 236.

No. 2] Computer Science Concepts in Copyright Cases 277

Reader to parse and accept Lotus 1-2-3 macro language sentences.'*”

The hierarchical listing of the macro commands is a grammar because
the hierarchy determines which symbols may follow which other
symbols. By doing so, it performs the function of a formal language
grammar: to determine which sentences are within the language and
which are not. For example, the sentence “WORKSHEET, FORMAT,
FIXED” is acceptable only because FORMAT appears under the
WORKSHEET heading and FIXED under the FORMAT hzading.' The
sentence “WORKSHEET, RANGE, LABEL” is syntactically incorrect
because RANGE is not under the WORKSHEET heading: it is its own
heading. Thus, the hierarchical table within the menu tree file is a
representation of the macro language grammar and its symbols. The
grammar represented by the menu tree file is used by the Key Reader to
parse and accept the Lotus 1-2-3 macro language.'*

According to Judge Keeton, anyone who expresses the Lotus 1-2-3
menu command hierarchy in any way infringes on Lotus’s copyright.
However, because the Lotus 1-2-3 macro language itself is derived from
the menu commands presented on the computer screen to the Lotus 1-2-3
user, any expression of the macro language grammatical rules will
always contain the hierarchy inherent in the Lotus 1-2-3 menu com-
mands that appear on the screen.!” To put it another way, no one can
express the grammatical rules of the Lotus 1-2-3 macro language without
expressing in seme form the menu command hierarchy. Therefore,
following Judge Keeton’s reasoning, the only programmers that can write
a parser that will read or write the Lotus 1-2-3 macro language sentences
are those that are allowed to express the menu command hierarchy
inherent in the grammatical rules of the Lotus 1-2-3 macro language:
presumably Lotus and its licensees. By misunderstanding the computer
language grammar aspect of the Key Reader dispute, Judge Keeton
accidentally opened the door to a de facto monopoly of the Lotus 1-2-3
macro language in finding copyright protection for its grammatical rules
and symbols through non-litéral infringement. As a result, he disserved

142, A grammar specifies which sentences are in a tanguage and which are not. See
supra Part [V.A.

143, See Lotus Dev. Corp. v. Borland [nt’l, Inc., 831 F. Supp. 202, 210 {D. Mass.
1993).

144. See supra Figure 3.

145, See supra PartIV.C (explaining the hierarchy in grammatical rules). In the Lotus
1-2-3 program, the menu display itself had a hierarchy: some menu choices had to be
selected toreach other choices, The Key Reader technology allows users to make the same
sequence of menu choices by inserting a sentence of symbols (a macro) directly into the
program instead of making the selections on the screen. Each symbol represents a menu
choice. See Samuelson, supra note 37, at 236.

278 Harvard Journal of Law & Technology [Vol. 10

copyright policy and created the potential for a system which impedes
the optimal progress of computer software development. '

Given that computer language grammar: are not copyrightable, the
menu tree file used by Quattro Pro’s Key Reader shouid be found non-
infringing. This is because the menu tree file is merely a representation
of the Lotus 1-2-3 macro language grammar. That the macro language
grammar was derived by Lotus from the appearance of the Lotus 1-2-3
command menu is immaterial, On balance, this is a limit to copyright
protection from non-literal copying only, not literal copying of the Lotus
1-2-3 menu appearance., This relative loss of protection would be slight
compared to the greater advancement of the policies behind copyright
protection and greater doctrinal coherence overall.

V. SUMMARY AND CONCLUSION

The integration of computer science terminology into the legal
discourse increases the precision with which judges can analyze the
~ software copyright cases in front of them. To that end, fundamental
questions should be asked of the plaintiff in a non-literai software
copyright infringement suit to be sure that the infringed portion of their
program is clearly within the sphere of copyright protection. Further-

- more, that any infringement claim must survive these threshold tests
establishes a clear boundary line for programmers seeking to discern
what is theirs and what is in the public domain.

A. What a Judge Should Ask the Plaintiff

Once a judge has learned what a data structure and a computer
language grammar are, she has the tools to step around some of the
pitfalls inherent in a computer program copyright case. If the plaintiff is
arguing that the defendant’s program is infringing because it organizes
the subject data in a substantially similar way, the judge should ask the
plaintiff: “Is this organization a data structure that is uniquely necessary
1o run your algorithm?” If yes, then that organization is excluded from
copyright protection in order to ensure the free use of the algorithm. If
no, then the judge can decide whether the crganization of the data meets
the de minimus standard for copyrightability without concern that a

‘monopoly over the organization will prohibit public use of the
© algorithm."” Of course, the two parties will litigate whether the

146. See supra Part [V.B.

147. One can imagine an algorithm that could run on two different data structures, one
" being practical and efficient and the other introducing some gross degradation in algarithm
“performance. The latter dala structure is not copyrightable because of the limitations in

No. 2] Computer Science Concepts in Capyright Cases 279

algorithm requires the vnderlying data structure. Note that the judge
must determine that based on the usual “battle of the experts”; however,
the dependence of the algorithm on a particular data structure can be
determined with mathematical precision.'® As a result of employing the
appropriate computer science terminology, the court’s reasoning will
hew to traditional copyright reasoning while giving fuil consideration to
cutting edge software technology. The court’s attention will be facused
right at the center of the issue. ‘

In a case where the plaintiff is claiming that some kind of hierarchy
of commands or input symbols that controls the plaintiff’s program has
been infringed, the judge must ask: “Is this hierarchy of symbols
equivalent to a formal language grammar?” To pin the plaintiff down,
she can ask whether it would be possible to write a program to accept the
same sentences usable by the plaintiff’s program without relying on a
literal or non-literal copy of the symbols and hierarchy in dispute. If the
answer is yes, then the hicrarchy in dispute is not essential to represent
a grammar. If the answer is no, then the hierarchy in dispute is essential
to represent a grammar. Again, the answer to that question can be
determined with mathematical precision.

B. Computer Terms of Art and Copyright Analysis

Non-literal copying of a computer program is inherently difficult to
analyze without understanding relatively simple computer science
concepts and integrating them into-the legal discourse. By using
computer science terms of art, the risk of overprotection posed by the
existing computer program jurisprudence is significantly reduced and
more efficient progress in computer sofiware development is assured.
The Whelan and the Altai courts were correct to the extent that they both
recognized that copyright protection for computer programs cannot
extend to noncopyrightable elements. Their approaches fall short,
however, to the extent that they fail to acknowledge precisely those
program components that deserve independent consideration under
copyright analysis. As long as the courts considering computer
software copyrightability persist in crafting new terms of art and ignoring
the more precise and relevant computer science terms, we will have

(2l

expression arising from the practicalities involved. This reasoning is the same as the
reasoning used in Kern River Gas Transmission Co. v. Coastal Corp., 899 F.2d 1458 (5th
Cir. 1990). With respect to computer program:; “this point israised in Computer Assaciates,
International, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992). See also supra note 83
and accompanying text (discussing merger doctrine and compilation protectlon for data
structures). But see Miller, supra note 14, at 1009 n.156.

148. -Either an algorithm is dependent on a data structure or it is not. That dependenoe
will be apparent from the algorithm itself, separate from any instant expression of it.

- 280 Harvard Journal of Law & Technology IVol. 10

unpredictability in computer software copyright law, which in turn will
impede full throttle progress in the development of computer sofiware.
That result is bad for the economy, bad for consumers, and contrary to
the directive of the Constitution’s Copyright Clause.

